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So little is known about the early life history of leatherback turtles (Dermochelys coriacea) from hatchling to

adulthood that this period has been termed the ‘lost years’. For critically endangered eastern Pacific leather-

back populations, continued and rapid declines underscore the urgent need to develop conservation

strategies across all life stages. We investigate leatherback hatchling dispersal from four Mesoamerican nesting

beaches using passive tracer experiments within a regional ocean modelling system. The evolution of tracer

distribution from each of the nesting beaches showed the strong influence of eddy transport and coastal cur-

rents. Modelled hatchlings from Playa Grande, Costa Rica, were most likely to be entrained and transported

offshore by large-scale eddies coincident with the peak leatherback nesting and hatchling emergence period.

These eddies potentially serve as ‘hatchling highways’, providing a means of rapid offshore transport away

from predation and a productive refuge within which newly hatched turtles can develop. We hypothesize

that the most important leatherback nesting beach remaining in the eastern Pacific (Playa Grande) has

been evolutionarily selected as an optimal nesting site owing to favourable ocean currents that enhance

hatchling survival.

Keywords: dispersal; eastern Pacific Ocean; leatherback turtle; life history; hatchlings;

regional ocean modelling system
1. INTRODUCTION
Leatherback turtles (Dermochelys coriacea) in the eastern

Pacific Ocean have declined by up to 90 per cent over

the past two decades and are currently listed as critically

endangered [1]. These declines have been driven by a

variety of anthropogenic impacts, including development

at nesting beaches, poaching of eggs, degradation of

foraging habitats and fisheries bycatch [2]. Although

conservation efforts at the largest eastern Pacific nesting

beach (Playa Grande, Costa Rica) have contributed to

turtle protection and recruitment, mortality rates remain

high (approx. 22% [2]), owing largely to interactions of

juvenile and adult leatherbacks with artisanal and com-

mercial fisheries [3–5]. There is an urgent need to

develop integrated management strategies to protect

leatherback turtles across all life stages.

The highest-density leatherback nesting colonies remain-

ing in the eastern Pacific occur on beaches within the

Parque Nacional Marine Las Baulas (PNMB), Costa Rica

(108 200 N, 858 510 W), although smaller colonies exist
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throughout the region from Panama to central Mexico [6].

Leatherback turtles at PNMB nest multiple times within a

single season (generally December–April) at approximately

8–10 day intervals [7,8]. Most tagging, genetic and mark–

recapture studies have focused on the internesting and

post-nesting movements of nesting adult females [8–11].

So little is known about the early life history of leatherbacks

that the period from hatching to approximately 10 years

later, when females return to the nesting beach, is referred

to as the ‘lost years’ [12]. Although very little information

is available on these early life-history stages, it is well

known that hatchlings face a wide range of predators on

the beach and within shallow coastal waters [13], and race

to get offshore, where decreased predation risk and increased

resource availability maximize survival potential [14,15].

The region offshore of the Pacific coast of Mesoamerica is

characterized by dynamic ocean conditions. Wintertime

winds through coastal mountain gaps contribute to the

development of large-scale anticyclonic eddies within the

Gulfs of Tehauntepec and Papagayo [16] (electronic sup-

plementary material, figure S1). These are intense and

stable features that can last for up to six months and

propagate more than 2000 km offshore from the continental

margin, transporting nutrient-rich coastal waters and organ-

isms into the ocean interior. In this study, we perform passive
This journal is q 2012 The Royal Society
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Figure 1. Monthly snapshots of modelled surface circulation (arrows) and tracer concentration (contours) for the year 2000 based
on continuous tracer releases between 15 January and 15 April from nesting beaches at (a–d) Barra de la Cruz, (e–h) Playa
Chacocente, (i– l) Playa Grande and (m–p) Playa Carate. Black dots show tracer release locations.
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tracer experiments within a regional ocean modelling system

(ROMS) of the eastern Pacific Ocean to investigate leather-

back hatchling dispersal from Mesoamerican nesting

beaches. In particular, we test the hypothesis that the leather-

back nesting colony at Playa Grande, Costa Rica, is the

optimal location in the eastern Pacific for nesting owing to

the efficient transport of hatchlings within productive

eddies to offshore waters where mortality risks are lower.
2. METHODS
The modelling framework uses a global eddy-resolving ocean

model to provide the boundary conditions for a nested regional

ocean model that is used to perform the passive tracer exper-

iments. The global coupled physical–biological ocean model

is the Japan Agency for Marine-Earth Science and Technology

(JAMSTEC) Ocean General Circulation Model for the Earth

Simulator (OFES; see detailed description by Masumoto et al.

[17]). With a 1/108 horizontal resolution and 54 vertical levels,

the OFES model is driven by daily mean forcing from National

Centers for Environmental Prediction/National Center for

Atmospheric Research (NCEP/NCAR) reanalysis from 1998

to 2010 and with QuikSCAT satellite winds [18]. The ROMS

[19,20] is nested within the OFES model within the eastern

tropical Pacific (58 S–208N, 1108–708W) with the same hori-

zontal resolution and 30 vertical terrain-following layers. The

boundary and initial conditions for the ROMS model are
Proc. R. Soc. B (2012)
provided directly from the OFES simulation. This type of

nested ocean modelling approach has been used in previous

studies to successfully capture both the mean and the long-

term variability of regional-scale Pacific circulations [21–25].

Both the OFES [26] and the ROMS simulations (electronic

supplementary material, figure S2) effectively capture the

regional dynamics in the eastern tropical Pacific, including

high sea surface height variability along the principal eddy

pathway, based on comparisons with satellite observations.

The advection and mixing dispersion statistics are diag-

nosed by injecting a passive tracer at selected coastal

regions of the model representing known leatherback turtle

nesting grounds [27]: Barra de la Cruz, Mexico (15.88 N,

95.98W); Playa Chacocente, Nicaragua (11.58 N, 86.28 W);

Playa Grande, Costa Rica (10.38N, 85.98 W); and Playa

Carate, Costa Rica (8.48 N, 83.48W). The dynamics of the

passive tracers are implemented in the ROMS model as an

advection–diffusion equation with a decay term, following

the approach of Combes et al. [22]:

@P

@t
þ u � rP ¼ AHrH

2P þ @

@z
AV

@P

@z

� �
� P

t
þQðx; y; zÞ;

where P is the passive tracer concentration, AH ¼ 5 m2s–1 is

the horizontal diffusivity, AV the vertical diffusivity obtained

by a K profile parametrization scheme [28], Q a time-

independent source term and t is the decay time scale.

http://rspb.royalsocietypublishing.org/
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Figure 2. Long-term (2000–2008) mean tracer concentration at 1 June based on continuous tracer releases between 15 January
and 15 April from nesting beaches at (a) Barra de la Cruz, (b) Playa Chacocente, (c) Playa Grande and (d) Playa Carate. Black
dots show tracer release locations.
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The source term is used to release the passive tracer at the

selected coastal location by setting Q ¼ 1 over a radius of

40 km with a vertical extent of 0–50 m. In this study, we per-

formed release experiments for the years 2000–2008, with

tracer continuously released (Q ¼ 1) between 15 January

and 15 April in each model year, corresponding to the nest-

ing period. In the subsequent months between April and

December, we stop the tracer release (Q ¼ 0) and evaluate

how the tracer concentration is dispersed by the ocean circu-

lation. In order to not accumulate tracer concentration from

previous year releases, we set the decay term, t, to a time

scale of eight months. Since leatherback hatchlings spend a

majority of time in near-surface waters [29], tracer concen-

trations are integrated through the upper 50 m of the water

column. Leatherback hatchlings do not develop full swim-

ming ability for up to six months [29], so the period of the

simulation represents their early life history, when they first

interact with the ocean environment and can be considered

to behave as passive tracers advected by the ocean currents.
3. RESULTS
The evolution of tracer distribution following release from

each of the nesting beaches shows the impact of eddy

transport and coastal currents (figure 1). It is evident

that by April 2000, tracer released at Playa Chacocente

and Playa Grande is entrained within the eddy pathway

and advected offshore, while tracer released from beaches

to the north and south is predominantly advected south-

ward and along the coast. Large-scale eddies like those

observed in the model output for 2000 were observed
Proc. R. Soc. B (2012)
in all years for which experiments were performed

(2000–2008), consistent with satellite observations [16].

The long-term mean tracer concentrations confirm that

the patterns seen in 2000 were persistent throughout the

study period, and that the highest offshore tracer concen-

trations occurred for tracer released at Playa Grande

(figure 2). Significant mean tracer concentration is seen

up to 1500 km offshore of Playa Grande by 1 June

(approx. 1008W; figure 2c), reflecting entrainment within

Papagayo eddies throughout the nesting period (cf.

figure 1i–l ). Although offshore tracer dispersal is also seen

from Playa Chacocente, again reflecting eddy transport,

the highest mean tracer concentrations remain close to the

nesting beach (figure 2b). In contrast, tracer released at

Barra de la Cruz and Playa Carate shows significant near-

shore retention (figure 2a,d), reflecting alongshore

transport near the coast throughout the nesting period (cf.

figure 1m–p). Results from the tracer experiments corrobo-

rate the hypothesis that hatchlings from Playa Grande are

more likely to be entrained and transported offshore by

large-scale eddies during the early months following nesting.

Although the nesting beaches considered here are separated

by only a few hundred kilometres, the evolution of passive

tracer distribution, and presumably hatchling turtles, is

markedly different, highlighting the intrinsic environmental

attributes of Playa Grande as an effective nesting beach.
4. DISCUSSION AND CONCLUSIONS
Passive tracer experiments conducted within a ROMS

model of the eastern tropical Pacific demonstrate significant

offshore eddy transport in late winter from Playa Grande,

http://rspb.royalsocietypublishing.org/
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Costa Rica. This is in contrast to beaches to the north and

south, from which there is significant coastal retention. The

model results support the hypothesis that hatchling leather-

backs emerging from nests in late winter at Playa Grande

can be rapidly and efficiently transported offshore within

Papagayo eddies. Because turtles face increased predation

risk near the beach, quick offshore transport is likely to

increase the probability of survival [14]. Moreover, these

eddies provide a productive refuge within which newly

hatched turtles can develop.

We hypothesize that Playa Grande was evolutionarily

selected as an optimal nesting site owing to enhanced

hatchling survival probability as a result of offshore eddy

transport. A corollary to this hypothesis is that reduced

early-life mortality will lead to increased return of adult

females, who show high site fidelity to nesting beaches

[30]. Thus, the relatively large leatherback population at

Playa Grande compared with other eastern Pacific bea-

ches may be the result of enhanced survival during early

life stages. These findings support the suggestion that

proximity to favourable ocean currents strongly influences

sea turtle nesting distributions [31–33]. Hays et al. have

also suggested that the prevailing oceanography around

nesting sites may be responsible for the selection of

foraging sites by adult turtles [4,34].

Understanding the fate of leatherback turtle hatchlings is

critical to protect the species. Large marine vertebrates are

highly vulnerable to fisheries bycatch because of their late

age at maturity and low reproductive rate [4,35]. Because

leatherbacks spend more than 10 years at sea before return-

ing to the nesting beach, these ‘lost years’ are potentially

critical for population viability. Early attempts to infer the

passive drift of animals using ocean models lacked resol-

ution compared with direct measures of passive drift,

such as from Lagrangian drifters [36], but these models

of ocean circulation are now greatly improved [37].

Models such as those employed here can identify important

offshore transport corridors for populations of highly

migratory marine species that could be buffered from

human impacts. The modelled data can also be coupled

with existing tracking datasets involving other leatherback

life-history stages (e.g. internesting and post-nesting

females, foraging males and subadults) and marine species

to examine ecosystem connectivity and to develop inte-

grated life-history management strategies. Directional

swimming could have an impact on the resulting trajectory

[38], and we therefore plan to incorporate swimming be-

haviour in the tracer experiments in the future. There are

currently only very short-term data available on the swim-

ming behaviour of hatchlings [14,39]. Validation of these

models will therefore require new technologies to track

leatherback turtles across multiple years and life stages.
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Supplementary Figure 1 - ROMS model domain and model bathymetry (m). Passive 
tracer experiments were conducted at the sites of the four nesting beaches shown 
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Supplementary Figure 2 - Satellite-derived long-term mean sea surface height (SSH; 
a) and SSH standard deviation (c) compared to ROMS model 2000-2008 mean SSH 
(b) and SSH standard deviation (d). Satellite SSH derived from the Aviso product 
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