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As genetic data are frequently applied to give advice to the IWC (including, but not 
limited to, detection of population structure), there is a need to agree on data quality 
criteria for currently used DNA marker types (mtDNA sequences, microsatellites, Single 
Nucleotide Polymorphisms (SNPs); nuclear DNA sequencing). The guidelines and 
considerations on DNA quality provided here represent common practice subject to 
ongoing discussion and will need future adaptation, as the state-of-the-art of DNA 
analysis in population genetics progresses. 

It is also evident that, although compliance with these guidelines is highly desirable - this 
does not preclude consideration of genetic work failing to fully meet these 
recommendations. Nonetheless, the issues raised below are intended to assist IWC SC 
members in judging the reliability of information from genetic studies. In addition, for 
genetic studies explicitly carried out to provide stock definition and other advice relevant 
to management to the IWC, adherence to these guidelines is strongly recommended. 

The quality of DNA data-based management critically depends on three issues (as 
summarized in Morin et al. 2010): 

1) Experimental design (including appropriate sampling scheme with regard to 
sample size and geographic coverage) 

2) Procedural implementation of sample handling and molecular analysis (including 
labeling, archiving, and data quality checks) 

3) Appropriate data analysis and interpretation to provide management advice 

Although proper consideration of all three issues above is highly recommended, these 
guidelines are restricted to explicit coverage of item 2, i.e., the quality of DNA data. As 
such, this paper mainly deals with awareness, minimization, and control of DNA typing 
errors. Although assessment of genotyping error rates is more common in published 
studies now, it is still often neglected. Reported error rates between 0.5% and 1% are 
typical in many studies (see reviews by Bonin et al. 2004, Hoffman and Amos 2005, 
Pompanon et al. 2005) and higher rates are likely in studies involving DNA extracts of 
poor quantity or quality (Pompanon et al. 2005). Conceptually, the reliability of any 
estimate can be judged based on its proximity to the true value (accuracy) and on its 
repeatability (precision). Methods for quantifying error rates are provided by Pompanon 
et al. (2005). As true error rates are hard to estimate – requiring special procedures 
including repeated genotyping or other methods as outlined below - it is evident that most 
efforts to assess error rates are in fact identifying inconsistencies in data sets. 
Nevertheless, for simplicity we will use the term ‘errors’ to include inconsistencies in 
scoring and recording genotypes. Our objective is to provide a general procedural outline 
regarding how to qualitatively ensure and report DNA data quality and to provide some 
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general quantitative suggestions for benchmarks in quality control. Whenever possible, 
this document shall refer to established published procedures.  

Issues related to experimental design and appropriate data analysis and interpretation are 
summarized in a separate document (Waples et al. 2012) that provides guidelines for 
marker choice, as well as testing the statistical power of molecular analyses to address 
particular questions. 

Errors will be present in virtually every dataset, and thus it is important to be both aware 
of the most likely types of errors and to incorporate into every study methods for limiting, 
detecting, and correcting errors. Errors can be introduced at various points of a DNA 
study (Figure 1); the most important factors that contribute to errors will likely include 
mislabled samples, data entry errors, etc. – sometimes called “handling errors”. In 
contrast, “systematic errors” are associated with the tendency for particular genetic 
markers and/or sample types to be susceptible to errors due to their inherent 
characteristics. In total, errors typically fall into these primary categories: 

1) unreliable genotyping due to locus characteristics 
2) Insufficient tissue or DNA sample quality 
3) Inconsistency of methods, lack of adherence to standards of Good Laboratory 

Practise (GLP – Seiler 2005) that may exacerbate “handling” errors 

Item 1 calls for marker validation (often addressed in a pilot study), while Items 2 and 3 
are addressed by implementing systematic quality control and assessment procedures 
throughout the entire study. 
 
Marker validation 
Microsatellites 
Microsatellite data quality can be affected by repeat complexity, the number of alleles, 
the size range of alleles (Morin et al. 2009b), tendency of microsatellite PCR products to 
“stutter” (produce multiple peaks adjacent to the "true" peak, van Oosterhout et al. 2004) 
or be adenylated (also called “plus-A”), and variation in experimental conditions 
(Davison and Chiba 2003; LaHood et al. 2002). To validate a microsatellite locus, the 
characteristics of the repeat type need to be verified by DNA sequencing in the species to 
be analyzed. This is particularly important for the plausibility check on allele length 
during allele calling (see below). A pilot study should then investigate reliability of 
amplification and identify technical problems. These can include localization of 
adenylation peaks (extra adenine added to the end of amplicons by the Taq polymerase 
resulting in a product that is one base larger than predicted) or “stutter” (additional peaks 
adjacent to the “true” allele often in multiples of the repeat unit and probably related to 
errors in amplification through repeat regions), null alleles (failure to amplify one allele 
in heterozygotes), and frequency of allelic dropout (failure to recognize or amplify 
particular alleles, leading to a false estimation of heterozygote frequency) - see Goossens 
et al. 1998 and Tiedemann et al. 2004 for further descriptions). The pilot study should 
include all relevant sample populations and a sufficient sample size per putative 
population to permit a statistical test of Hardy Weinberg Equilibrium (HWE) 
expectations. A consistent deviation from HWE can be an indicator of such technical 
problems (in particular, if it occurs in particular loci across populations), although HWE 
departure can also have biological reasons (then, however, it is more likely to occur 
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within a population across loci). In addition, the genotypic data should be examined for 
patterns of linkage disequilibrium (LD; non-random associations of alleles at different 
gene loci).   

Like departures from HWE, LD can result from a variety of biological factors as well as 
artifacts or errors.  LD occurs due to genetic drift in all finite populations, and the 
magnitude of LD can be used to estimate population size. However, many analyses 
depend on the assumption that different loci are independent. Analysis of LD can identify 
locus pairs that are consistently out of equilibrium (linked), in which case this should be 
accounted for in subsequent treatment of the data (e.g., by dropping one of the loci from 
the analysis if independence is assumed). Both HWE and LD can be examined using a 
variety of software packages, e.g., GENEPOP (Raymond and Rousset 1995); FSTAT, 
etc.  

It should be noted that using HWE departure for error detection may have an impact on 
later population genetic analyses and conclusions. For instances, if genetic markers are 
removed from the data set because they showed significant deviations from the expected 
HWE genotype frequencies, then later conformation with HWE is likely due to the 
selection of markers and not related to the underlying population genetic structure. Tests 
of HWE and LD often involve multiple tests of the same hypothesis.  In these 
applications, it is common practice to use a correction for multiple testing, such as the 
Bonferroni correction, in which the critical P value is inversely proportional to the 
number of tests. Statistically, this test is designed for interdependent pairwise 
comparisons (=non-orthogonal study design). Hence, it is correctly applied for LD 
analysis among all pairs of loci, but not for repeatedly analyzing HWE for different loci. 
Moreover, this correction is known to be conservative and hence will fail to detect some 
departures from the null hypothesis.  This problem is partially overcome by the sequential 
Bonferroni-method, but an even better option can be to use the false discovery rate (e.g., 
Garcia 2003), which adjusts for multiple testing without sacrificing as much power as the 
Bonferroni correction.   

There are established routines to assess marker quality that can be used to decide whether 
markers should be included or excluded from analysis (e.g. Givens et al. 2007). If the 
marker appears unreliable at this stage, it should not be used. When preliminary analyses 
identify marker quality to be questionable but not obviously poor, analyses of data with 
and without that marker can help to determine whether a single marker is causing a 
particular result. 
 
Mitochondrial DNA (mtDNA) 
If using primers not validated in the species to be studied, the mitochondrial origin should 
be demonstrated. In particular, the possibility of erroneously sequencing nuclear 
pseudogenes (Numts; Lopez et al. 1994; Benssason et al. 2001) should be ruled out, as 
Numts are pervasive in some species (e.g. Tursiops sp; Dunshea et al. 2008), and can 
easily be mistaken for actual mitochondrial haplotypes, potentially leading to false 
inference of population structure or other analysis errors. Several methods have been 
described that can in most cases help to identify Numts (Bensasson et al. 2001; Dunshea 
et al. 2008; Lopez et al. 1994). After identification of Numts, primers should be re-
designed such that they specifically amplify mtDNA (Tiedemann and von Kistowski 
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1998). Generally, sequences should be compared to GenBank (BLAST) and run through 
DNA surveillance routines, when available. Note – however – that GenBank itself lacks a 
stringent control of sequence authenticity, such that additional sequence validation might 
be necessary. 
 
Single Nucleotide Polymorphisms (SNPs) 
A variety of methods exist to examine Single Nucleotide Polymorphisms (SNPs), i.e., 
traditional Sanger-Sequencing, Next-Generation-Sequencing (NGS), analysis on standard 
or custom-made microarrays. Although SNP genotyping assays are in general very 
accurate and handling errors can be limited by appropriate automated data entry and 
transfer procedures, handling errors can still occur and systematic errors are sometimes 
found in a small percentage of “problem” SNP loci that exhibit unusually high error rates 
(Sheet and Stephens 2008). Two types of errors can occur, i.e., (1) an erroneous 
determination of the single nucleotide (genotyping error) or an erroneous comparison of 
non-orthologous loci. The former error rate depends on the typing technology: In Sanger 
sequencing, this error can be minimized by sequence quality checks (see below). The 
different NGS-platforms have their specific quality scores to evaluate sequencing 
reliability, most prominent the coverage (in the case of SNPs, the number of repeated 
sequence reads covering the same SNP). The reliability of microarray studies crucially 
depends on the source of sequence information used to create the microarray (ideally, 
sequence information for specimens of the target species encompassing the suspected 
most divergent target populations). SNP locus validation often relies on pilot studies and 
typically excludes individual SNPs with a high proportion of missing data or showing 
extreme deviations from Hardy-Weinberg equilibrium (Hosking et al. 2004); in studies 
with a high density of SNP loci an alternative approach using Linkage Disequilibrium 
analysis can detect problematic loci using correlation of alleles among nearby genetic loci 
and can reduce genotyping error rates by automatically correcting some genotyping 
errors (Sheet and Stephens 2008, implemented in the software package fastPHASE). 
 
Systematic quality control and assessment 
Assessing sample quality prior to genetic analysis 
For many genetic studies, variation in sample quality (e.g., degraded samples from 
stranded animals, non-invasively collected samples such as faeces and sloughed skin, 
samples degraded from long-term storage or improper handling, co-purification of 
inhibitors, potential contaminants etc.) will be a factor.  Many publications discuss 
methods to assure data accuracy for samples known to be of poor quality (e.g., McKelvey 
and Schwartz 2004; Morin et al. 2001; Navidi et al. 1992; Paetkau 2003; Taberlet et al. 
1996) and the need to estimate error rates (Bonin et al. 2004; Broquet and Petit 2004; 
Morin et al. 2009a). Analysis of DNA sample quality prior to genetic data generation can 
ensure, for example, that low quality (and therefore highly error prone) samples are either 
removed from the study or replicated sufficiently to ensure accuracy. This is particularly 
important for studies involving sample types that are likely to be of poor quality (e.g., 
non-invasive fecal samples, sloughed skin, poorly preserved and historical "ancient 
DNA" samples; McKelvey and Schwartz 2004; Morin et al. 2001; Morin and McCarthy 
2007; Paetkau 2003; Taberlet et al. 1996). Indeed, the presence of even a single poor 
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quality sample in a small population sample can result in false inference of population 
structure (Morin and LeDuc 2004; Morin et al. 2009a).  

If problems are detected with particular samples or if quality issues are expected, it is 
strongly recommend that samples be pre-screened for DNA concentration and quality 
(i.e., degree of degradation, presence of inhibitors) prior to beginning a study with 
nuclear markers. Purification of DNA for PCR can co-purify PCR inhibitors (Hoelzel 
1998) and this varies for different tissues (e.g., cetacean skin extracts may amplify better 
at lower concentrations due to these contaminants). When samples are expected to meet a 
minimum threshold level of DNA (e.g., 20 ng per PCR reaction), quantification by 
absorbance or fluorescence spectrophotometry (e.g., Pico Green) can be rapid and 
inexpensive, allowing sample concentrations to be normalized to produce consistent 
results. When samples are expected to be of low quality or concentration, more sensitive 
methods such as quantitative PCR (qPCR) can provide highly accurate data on DNA 
concentration, and even on relative abundance of DNA at multiple fragment sizes, to 
optimize sample selection and data replication criteria (Morin et al. 2001; Morin et al. 
2007; Morin and McCarthy 2009a). When DNA concentration is low, potential for 
contamination is increased. When multiple pieces of sloughed skin are stored in the same 
vial, the potential for cross-contamination is also higher. When DNA is fragmented it is 
advisable to target smaller microsatellite or mitochondrial amplicons. 

Duplicated analysis approaches for error detection  
Duplicate analyses of the same sample has been used to detect genotyping, sample 
labeling, and handling errors (e.g. Taberlet et al. 1996, Bellemain et al. 2005, Paetkau 
1993, Glover et al. SC/63/SD1), but this necessarily involves increased effort and 
expense (Schwartz et al. 2006). Some projects re-analyze a random subset of samples for 
error checking (“targeted replication”, first applied by Palsboll et al. 1997), while others 
reanalyze every sample at every locus (“multi-tube analysis” - sometimes from separate 
tissue samples, e.g. Glover et al. 2011 SC/63/SD1) and then compare results.  

Targeted replication involves a subset of the entire dataset and so is efficient in terms of 
time and cost, but simulations have suggested that this will be less efficient to detect and 
correct genotyping errors and associated biases when per locus error rates are >5% (Roon 
et al. 2006). The “multi-tube” approach is useful for both error checking and parentage 
analysis, since true biological offspring should share one allele at each bi-allelic locus 
with each parent (e.g. Skaug et al. 2004 SC/53/SD3, Pampoulie et al. 2011 SC/63/RMP1, 
Tiedemann et al. 2011). A novel alternative to targeted replication for estimation of error 
rates is comparison of genotypes from mother/fetus pairs - because mother and offspring 
necessarily must share at least one allele per locus such data provide an opportunity to 
estimate error rates (Haaland and Skaug 2007, SC/59/SD2). 

Detection of multiple samples with exactly the same multi-locus genotype can indicate 
duplicate samples and should be investigated (e.g. Glover et al. 2011 SC/63/SD1). 
Uncorrected genotyping errors will result in a spike in the number of pairwise 
comparisons that match at “all but one” locus (“1MM-pairs”) and error correction should 
not be considered complete until all such pairs are confirmed through carefully 
documented data replication at the locus or loci in question (Waits and Paetkau 2005). 
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It has been suggested that researchers should seek to decrease error rates to less than 1 
percent through duplicate analysis error checking and corrections (Waits and Paetkau 
2005), but a more pragmatic approach might instead use sensitivity testing to determine 
the error rate that is tolerable given the number of available samples, analytical objective, 
and appropriate effect size. If errors occur stochastically (i.e., not systematically), the 
larger the total number of independent loci analyzed the less of an affect a particular error 
rate will have on the ability to distinguish “signal” from “noise” . Some additional time 
and expense should be included in project budgets for error checking via replicated 
sample analysis, but whether this is targeted replication or complete duplication of all 
samples and all loci will depend on the overall sample size and other details of the 
particular sample set and research question. 

Blind testing 
A somewhat controversial variant of targeted duplicate analysis involves repeated testing 
of a subset of samples where the analysts are ignorant of the specimen identifiers until 
testing is complete, often called “blind testing” (the same objective can be accomplished 
by sending samples to an independent laboratory for reanalysis, but this will require 
careful inter-laboratory calibrations). This approach can improve attention to detail and 
decrease complacency, but can also erode morale and the attitude of research staff who 
may feel they are being subjected to unnecessary surveillance (Waits and Paetkau 2005).  

Automated screening analysis for error detection 
A third approach for error detection is to use computer algorithms to detect samples 
containing genotyping errors, and unlike the quantification and multi-tube approach, this 
may additionally allow detection of errors created when scoring gels or transcribing data 
(Schwartz et al. 2006). For example, the DCH test (“difference in capture history”, 
implemented in the software package DROPOUT, Schwartz et al. 2006), is applicable for 
multi-locus genotyping such as microsatellite and SNP loci. The approach estimates the 
number of genetic markers required to eliminate “shadow effects” (lack of discrimination 
of individuals because of low variability or sampling too few markers, Evett and Weir 
1998, Mills et al. 2000, Waits et al. 2001), then adds additional loci one at a time to 
determine if there is an increase in number of individuals generated by adding additional 
loci; rotating the loci so that every locus is added late in the process allows an efficient 
screen to determine which loci are erroneously adding new individuals (McKelvey and 
Schwartz 2004). Screening datasets with various computer algorithms (Paetkau 2003, 
McKelvey and Schwartz 2004, McKelvey and Schwartz 2005, Schwartz et al. 2006), 
allows for both error removal and statistical evidence that the data have few or no errors 
(Schwartz et al. 2006). 

Correcting errors 
Whenever potential errors are detected, it is necessary to re-run samples that might 
contain errors to clarify the source of discrepancies and correct them (Ewen et al. 2000, 
Miller et al. 2002, Valiere 2002, van Oosterhout et al. 2004, McKelvey and Schwartz 
2005). Re-running samples should be considered a necessary part of the data analysis and 
error checking process, and also included in project budgets. 
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Ensuring consistent data generation 
In order to limit the number of errors and provide clear and transparent documentation of 
experimental procedures, the following measures are recommended (Roman numbers as 
in Figure 1)  

I. Sampling: Preferentially provide prelabelled (numbered) sample vials prefilled with 
appropriate storage buffer to the field worker. Provide explicit easy-to-read 
instructions for contamination-minimizing sampling.  It is essential that each 
sample is uniquely identified. Methods for ensuring that samples are uniquely 
identified can include: Providing prelabeled (numbered) sample vials (barcoded, if 
possible), providing a pre-numbered data sheet against which sample numbers are 
checked off as vials are filled, etc. Double-label every vial with waterproof pen, do 
not use tape for labeling (might fall of later on). It is advisable to start with the vial 
with lowest number and strictly following numbers, such that they reflect order of 
sampling. 

II. Sample handling:  Establish standardized procedure for receipt of samples at the 
analytical laboratory. In particular, create database entry with field number and 
unambiguous lab number. Double check data entries to minimize transcription 
errors. It is advisable to have a backup whenever possible, so samples can be 
divided and sub-samples kept in separate storage locations (i.e., when samples are 
shared between laboratories or before shipping samples from a remote location) 

III. Laboratory Practice:  Work according to established procedures for Good 
Laboratory Practice (GLP, e.g., Seiler 2005). Establish standardized routine to 
avoid mislabeling of tubes in the process of genotyping. Electrophoretic migration 
can be affected by both size and nucleotide composition of the alleles, as well as the 
addition of fluorescent molecules for visualization, although this is less of a 
problem when using modern capillary analyzers. Allele sizes can differ by more or 
less than the size of the microsatellite repeat unit (e.g., a CA repeat can have alleles 
that differ on average by 1.8-2.2bp; Amos et al. 2007). In addition, electrophoresis 
is itself variable and can cause allelic size differences of up to 7bp across time, 
technologies, and instruments (Davison and Chiba 2003; LaHood et al. 2002). 
Several methods have been introduced to facilitate normalization of alleles, but all 
require that controls are run to verify that alleles are correctly sized (Amos et al. 
2007, Morin et al. 2009b). It is advisable to maintain all original data for reanalysis, 
and periodically check consistency of allele calling (“binning”) for a subset of 
samples by double-blind genotype calling involving at least two persons. It is good 
practice, when inconsistencies are found or when starting to use new microsatellite 
primers (especially on a different species), to compare allele calling to absolute 
length information obtained by sequencing (part of marker validation, see above). 

IV. Check data for consistency and plausibility. For microsatellites, use quality control 
software (e.g., MICROCHECKER, van Oosterhaut et al. 2004 and DROPOUT, 
McKelvey and Schwartz 2005) to check for null alleles and stutter/short allele 
dominance effects. Be aware that (1) such analysis packages do not necessarily find 
all potential errors and (2) non-rejection of the null hypotheses about non-existence 
of these effects can also originate from lack of statistical power; check HWE and, if 
heterozygote deficiency occurs, inspect data for rare allele homozygotes; check for 
plausibility of allele calls (referring to known repeat characteristics, see above; e.g., 
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a tetranucleotide microsat should be expected to typically yield alleles differing by 
multiples of 4). Individual samples with unusual characteristics warrant extra 
scrutiny to verify genotypes, as these samples are both more likely to contain errors 
and more likely to bias analytical results. A simple analysis of the number or 
percentage of homozygous genotypes per individual can rapidly identify individuals 
likely to have experienced high levels of allelic dropout. Plotting the values 
indicates which samples are outliers from the general population, so that genotypes 
can be replicated to correct seemingly homozygous genotypes that are due to 
“allelic dropout” (failure to amplify one of the alleles in a heterozygote, usually the 
larger fragment). Another approach is to use Jackknife analysis of HWE, where 
samples are sequentially removed to detect samples and genotypes that have a 
strong effect on HWE (Morin et al. 2009a) 
 A similar approach can be used to evaluate the distribution of missing datapoints 
across individuals and markers.  If data do not appear plausible after retyping, 
repeat entire typing starting with new DNA extraction from back-up sample, 
eventually sequence microsatellite in this specimen. For mtDNA sequences: 
sequence both strands (not required, but highly recommended), check quality of 
sequence with regard to ambiguous (mixed) bases, uneven spacing between bases; 
check sequence in BLAST for authenticity; check polymorphisms for plausibility 
(e.g., identify sequences which might show far more than expected polymorphisms 
and/or a bias towards a single nucleotide in several polymorphisms); if sequence is 
considered not plausible, re-sequence. If inconsistencies occur, re-sequence these 
specimens. From the entirety of unambiguously genotyped specimens, produce 
reference data set for which consistency the laboratory/researcher of origin holds 
primary responsibility, even though data are shared or submitted to central data 
bases. If microsatellite data from different laboratories are to be jointly analyzed, 
type a set of reference samples in both labs in order to synchronize allele calling 
(binning). 

V. Central databases hold responsibility for combined data sets. In coordinated 
data acquisition efforts (e.g., as in BCB-bowhead whales), there should be a 
stringent time schedule for quality checks on composite data sets, implemented by 
two types of deadlines. The first deadline is for data submission. After that, a 
predefined period of quality control starts in which (1) the individual laboratory can 
still correct the submission and (2) the central database also performs plausibility 
checks on data consistency (along the lines mentioned under V.). If inconsistencies 
occur, they will be communicated to the laboratory of origin. If no consensus can be 
reached, this ambiguity will be reported in all occasions where the data are used. 
After the quality control period, data must not be changed, except for very specific 
reasons for which the laboratory of origin holds full responsibility. 

VI. Data analysis: Manual file conversion should be avoided (because of copying 
error). Use automated routines for file conversion whenever possible. The program 
CREATE (Coombs et al. 2008) provides efficient conversion for a wide variety of 
analysis programs. In addition, consistent formatting of data through automated 
formatting from a database (as opposed to copy and paste in spreadsheets) can 
greatly reduce the introduction of errors due to data frame shifts (application of 
wrong samples to genotypes) or other data handling errors. 
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While validation is an important aspect of any protocol, routine error checking is equally 
important, since sample type and quality will vary between studies (Waits and Paetkau 
2005), and may even vary over time and space within studies (Lucchini et al. 2002). In 
addition to the procedural guidelines below, error rates should be systematically 
estimated, including incorporation of replicated “blank” controls that can be used to 
compare genotypes generated throughout the data generation process. These controls 
serve several purposes: 

1. Random sample replication to identify random and systematic errors. A subset 
of samples (a few percent of the total) scattered throughout the samples and 
genotyped/sequenced at all loci will help to identify errors that have to do with 
both sample handling and raw data interpretation.  

2. Control samples (2-3) replicated in every genotyping experiment (PCR and 
electrophoresis) serve to verify alleles and normalize sizes across time, 
laboratories and technologies. 

3. Targeted replication of samples after the majority of data are generated will 
allow verification of data quality and can also detect sample handling errors 
(e.g., reversal of a sample plate). This should involve some samples from every 
sample group run together, and result in ≥10% replication of the data set.  

Although it is not practical to detect and correct every error by the measures suggested 
above, some errors have potentially greater impact on analysis than others. One example 
of this is the presence of erroneous homozygous genotypes at rare alleles. Presence of a 
single rare homozygous genotype in a stratum has been shown to cause significant 
deviations from Hardy-Weinberg equilibrium, resulting in false inference of population 
structure (Morin et al. 2009a). Jackknife analysis of genotypic data (repeated analysis 
with the removal of one sample at a time) can reveal which samples have the greatest 
effect on HWE, so that they can be re-checked to verify the genotypes (Morin et al. 
2009a). 

Based on error rates that are commonly reported in the literature, it is recommended that 
analysts routinely take steps to decrease the overall error rate to around 1% for 
microsatellite data used in population studies and less than 1% for studies using SNPs 
(Bonin et al. 2004; Broquet and Petit 2004; Morin et al. 2009a). For parentage and 
genetic mark-recapture studies error rates should be even lower to reduce the number of 
false positives (Bonin et al. 2004, Hoffman and Amos 2005, Waits et al. 2001). In all 
cases, researchers should report the genotype error rates detected in the course of these 
quality checks (ideally both locus-specific and overall error rates) along with publication 
of the genetic analysis. If higher rates are estimated in particular studies of importance to 
IWC management decisions, the burden of proof should be on the investigators to 
demonstrate that the results, interpretations and conclusions they reach are still 
appropriate given the level of uncertainty involved. 
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Figure 1. Flow chart of DNA analysis procedures and potential error sources. Roman 
numbers refer to suggestions for quality control below. 
 


