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ABSTRACT  
 

Counts of southbound migrating whales off California form the basis of abundance estimation for the eastern North Pacific stock 

of gray whales (Eschrichtius robustus). Previous assessments (1967-2007) have estimated detection probability (p) from the 

detection-non detection of pods by two independent observers. However, tracking distinct pods in the field can be difficult for 

single observers; resulting in biased estimates of pod sizes that needed correcting, and matching observations of the same pod by 

both observers involved key assumptions. Due to these limitations, a new observation approach has been adopted wherein a 

paired team of observers work together and use a computerized mapping application to better track and enumerate distinct pods 

and tally the number of whales passing during watch periods. This approach has produced consistent counts over four recently 

monitored migrations (2006/7, 2007/8, 2009/10 and 2010/11), with an apparent increase in p compared to the previous method. 

To evaluate p and estimate abundance in these four years, we compared counts from two independent stations of paired observers 

operating simultaneously using a hierarchical Bayesian “N-mixture” model to simultaneously estimate p and abundance without 

the challenge of matching pods between stations. The overall average detectability po= 0.80 (95% Highest Posterior Density 

Intervals [HPDI] =0.75-0.85), which varied with observation conditions, observer effects and changes in whale abundance during 

the migration. Abundance changes were described using Bayesian model selection between a parametric model for a Normally 

distributed common migration trend and a semi-parametric model that estimated the time trends independently for each year; the 

resultant migration curve was a weighted compromise between models, allowing for key departures from the common trend. The 

summed estimates of migration abundance ranged from 17,820 (95% HPDI = 16,150-19,920) in 2007/8 to 21,210 (95% HPDI = 

19,420-23,230) in 2009/10, consistent with previous estimates and indicative of a stable population. 

 

 

INTRODUCTION 

 

Counts of southbound migrating whales at Granite Canyon, California, form the basis of abundance estimation for 

the eastern North Pacific stock of gray whales (Eschrichtius robustus). In 23 years, between 1967 and 2007, counts 

of the number of observed pods have been rescaled for pods undetected during watch periods, pods passing outside 

watch periods, and night travel rate (Buckland et al., 1993; Laake et al., 1994; Buckland and Breiwick, 2002; Hobbs 

et al., 2004; Rugh et al., 2005; Laake et al., 2012).  Notably, these previous assessments have estimated detection 

probability (p) from the detection-non detection of pods by independent observers using an analytical mark-

recapture approach. However, tracking distinct pods in the field was difficult for a single observer using just hand-

recorded entries onto a paper data form. As a result, matching observations of the same pod by both observers 

involved key (and untestable) assumptions, and limited observations of a given pod required corrections for bias in 

pod size estimation (Laake et al., 2012). 

 

Due to these limitations, a new observation approach has been adopted wherein a paired team of observers work 

together and use a computerized mapping application to help better track distinct pods and tally the number of 

whales passing during watch periods. This approach enables more repeated observations of each pod, leading to 

larger (and presumably less biased) estimates of pod size (Durban et al., 2010), and has produced consistent counts 

over four recently monitored migrations (2006/7, 2007/8, 2009/10 and 2010/11), with an apparent increase in p 

compared to the previous method (Durban et al., 2011). To evaluate p for this new approach, here we compared 

watch period counts from two independent stations of paired observers operating simultaneously during two of the 

four years (2009/10 and 2010/11), using a hierarchical Bayesian “N-mixture” model (Royle, 2004) to 

simultaneously estimate the probability of detection and abundance in all four years, without the challenge of 

matching pods between stations.  
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METHODS 

 

Data Samples 

Counts of gray whales were conducted from shore-based watch stations at Granite Canyon, California, during the 

2006/7, 2007/8, 2009/10 and 2010/11 southbound migrations (Table 1). Counts were made by rotating teams of 

observer pairs using naked eye aided by 7x50 binoculars; the primary observer in the pair kept continual visual 

watch while the secondary observer served as a data recorder but also kept watch and assisted with tracking already 

identified pods whenever possible. Each observer had one 90 min shift as primary observer, followed by a second 90 

min shift as secondary observer, and then a 90 min break. Sightings were entered into a real-time data logging PC 

program, which had a mapping screen to help track repeated sightings of the same pod. The map projected the likely 

movement tracks (and error ellipses) of the pods using predicted swimming speeds (1.44 - 1.95 ms
-1

), allowing re-

sightings and new sightings to be queried. Up to six 1.5-hour watch periods were used to cover daylight hours from 

07:30 to 16:30, during which the observers recorded passing whales and environmental conditions, specifically 

visibility (subjectively categorized from 1 to 6 for excellent to useless) and sea state (Beaufort scale). To control for 

weather conditions and for consistency with previous abundance estimations, we only used counts during watch 

periods with acceptable weather conditions throughout their entire duration, specifically visibility code <5 (excellent 

to fair) and Beaufort Scale <5. 

 

 
Table 1: The number of whales recorded during the southbound gray whale surveys from 2006/7 to 2010/2011. Data are the total 

counts, hours and distinct days for watches during acceptable observation conditions. 

 
Migration North Station 

 

South Station 

 Dates Whales Hours (days) Dates Whales Hours (days) 

2006/7 02 Jan–03 Feb 2691 204 (34) - - - 

 

2007/8 02 Jan–09 Feb 2079 202.5 (34) - - - 

 

2009/10 30 Dec–19 Feb 2034 246 (43) 11 Jan-06 Feb 1551 105 (20) 

 

2010/11 03 Jan–18 Feb 2885 265 (45) 10 Jan-04 Feb 1754 141 (24) 

 

 

 

Estimating Detection Probability 

We used the “N-mixture” approach (Royle, 2004) to simultaneously estimate detection probability pijt and 

abundance Njt for each watch period j in each year t, based on the total aggregated counts nijt of passing whales 

recorded by each of i = 1:2 watch stations in each period. The observed counts nijt were modeled as a binomial 

outcome conditional on the unknown true number of whales passing Njt and the detection probability pijt with 

hierarchical models assumed to describe variability in both N and p (e.g. Chelgren et al. 2011). The power to 

estimate detectability was achieved by comparing gray whale counts from two independent stations of paired 

observers operating simultaneously during two years (2009/10 and 2010/11) from watch stations that were 

positioned 35m apart at the same elevation (22.5m) above sea level. In 2009/10 counts were compared from the two 

watch stations operating simultaneously during 70 1.5-hour watch periods with acceptable weather conditions, 

covering 20 different days of the migration; in 2010/11 simultaneous counts were available from 94 watch periods 

over 24 different days (Table 1). However, we could also extrapolate detectability for all monitored watch periods in 

each of the four years based on the fitted model for detectability. In order to accomplish this, the counts for the south 

watch station were treated as zero-inflated binomial outcomes, with the binomial probability specified as a function 

uijt pijt where u = 1 or 0 to indicate whether or not count data were actually collected from that station, thus ensuring 

that structural zero counts from periods without a second watch did not contribute to the likelihood for estimation of 

p or N.  

 

Consistent with Laake et al. (2012), the model for detectability incorporated fixed effects   for visibility (VS) and 

Beaufort Scale (BF), as well as random effects associated with each observer o in 1:OB observers. We selected for 

the inclusion of these effects using Bayesian model selection with stochastic binary indicator variables g to switch 
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each of the three possible effects either in or out of the model depending on their relevance to the observed data 

(Kuo and Mallick, 1998): 

 

logit (pijt) = logit(po) +  g
bf

 β
bf

 BFjt +  g
v
β

vs
 VSjt+  g

ob      
   

 

where po is the overall average detection probability, assigned a Uniform(0,1) prior distribution, and logit(po) = 

ln(po/1-po).  Centered around this overall average, each of the fixed effects β
bf

 and β
bf 

was assigned a Normal 

distribution with mean zero and standard deviation 10 to allow non-zero effects to emerge. The random effect for 

each observer           
   was drawn from a Normal distribution with mean zero and standard deviation 

σ
ob

~Uniform(0,10). Each of the binary indicator variables, g, was assigned a Bernoulli(0.5) distribution to specify 

equal probability of inclusion or not of the effect in the model. 
 

 

Fitting Migration Curves 

The N-mixture approach also accounted for variation in p relative to changes in N (latent watch period abundances) 

during the migration. So, some power to estimate detectability was achieved by assuming a model for changes in 

watch period abundance over the course of the migration. We adopted a Poisson distribution Njt ~ Poisson(λjt) as a 

hierarchical prior for the distribution of abundances, and specified a model for the Poisson mean λ in terms of the 

number of whales passing each day (d), with an offset for the effort duration of each watch period, Ejt in decimal 

days (e.g. Laake et al., 2012),: 

 

log(λ
jt
) = log(E

jt
) + model

d(j)t
 

 

model
dt

 = z
dt

Common
dt

 + (1-z
dt

) Specific
dt

 

 

Days were specified as d= 0 to Dt. In all four years t we used Dt = 90, where days were counted from 12:00am on 1 

December, and we added an abundance of 0 whales passing for day 0 and Dt to anchor the fitted model when we 

assumed whales did not pass (following Buckland et al. 1993). Estimates from the remaining days were derived 

from a mixture (or compromise) of two competing models (“Common” and “Specific”; e.g. Li et al., 2012) 

describing changes in abundance across each annual migration. The model contributing each daily estimate was 

indicated using stochastic binary indicator variables zdt, each assigned a non-informative Bernoulli(0.5) prior 

distribution. 

 

For the “Common model”, we assumed a typical trend in abundance throughout each annual migration (e.g. 

Buckland et al., 1993), with abundance changes assumed Normally distributed around a migration mid-point, with a 

Normal distribution specified as a quadratic function of days, on the log scale:  

 

Common
dt

= at + bt*dt + ct*  
  

 

where the mid-point of the migration curve for each year t was derived by -bt/2at. This assumed common migration 

curve allowed information to be “borrowed” across years when needed, specifying association across years to 

strengthen inference about migration curves in years with relatively sparse counts. However, we specified each of 

the curve parameters at, bt and ct to be drawn from hierarchical Normal distributions with means µ
a
, µ

b
, µ

c
~ N(0, 10) 

and standard deviations σ
a
, σ

b
, σ

c
 ~Uniform(0,10); hyper-parameters that were common across years, rather than 

assuming that the parameters themselves were constant. This random effects formulation allowed the timing, level 

and extent of the Normal migration curve to vary annually around the general pattern, if supported by the data.  

 

Although it is likely that there is a typical pattern to the migration, we acknowledged that abrupt departures may 

occur in any particular year. To incorporate unusual patterns, we allowed for the selection of an alternative 

“Specific” migration model: a semi-parametric model that estimated the time trends independently for each year 

(e.g. Laake et al., 2012). We adopted a method in which the shape of the relationship of abundance across days was 

determined by the data without making any prior assumptions about its form, by using penalized splines (Ruppert, 

2002). Following Crainiceanu et al. (2005) we used a linear (on the log scale) penalized spline to describe this 

relationship: 
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Specific
dt

= S0 + S1*dt +    
 
           

 

Where S0, S1, s1,…,sk were regression coefficients to be estimated and κ1 <κ2<…< κk were fixed knots. We used K 

= 15 knots; a relatively large number to ensure the desired flexibility, and let kk be the sample quantile of d’s 

corresponding to k/K+1. To avoid overfitting, we penalized the s’s by assuming that the coefficients of         
were Normally distributed random variables with mean 0 and standard deviation σ

s
~Uniform(0,10). The parameters 

S0, S1were modeled as fixed effects with Normal(0, 10) prior distributions . 

 

 

Estimating Migration Abundance 

 

The multi-level model was fit using Markov Chain Monte Carlo (MCMC) sampling using the WinBUGS software 

(Lunn et al., 2000). Inference was based on 15,000 repeated draws from the posterior distribution of each model 

parameter conditional on the observed data, following MCMC convergence over 5000 iterations determined from 

three independent chains begun from over-dispersed starting values (Brooks and Gelman, 1998). This sampling 

approach allowed uncertainty to be propagated across levels of the model. Notably, estimates of parameter values 

across MCMC iterations were used to estimate the probability of inclusion of covariate effects in the model for 

detectability, given by the posterior probability p(g=1) of each indicator variable g. Similarly using between-model 

moves indicated by zdt , the posterior probability of conforming to the common trend model was calculated, and 

inference about abundance on each day was based on a weighted compromise between the competing models.  

 

The total number of whales passing during each migration was estimated by summing the expected value from the 

model-averaged number of whales passing each day from time 0 to Dt (e.g. Laake et al., 2012). These estimates 

were then rescaled to account for the differential passage rate at night (Perryman et al., 1999), based on the 9-hour 

day multiplicative correction factor of Rugh et al. (2005). Specifically, we applied a constant nighttime correction 

factor that was assumed to be a Normally distributed fixed effect with mean of 1.0875 and standard deviation of 

0.037. 

 

 

RESULTS 

 

The overall average detectability po=0.80 (95% Highest Posterior Density Intervals [HPDI] =0.75-0.85), which was 

modified by observation conditions and observer effects (Table 1).  The posterior distribution for the effect of sea 

state, measured using the Beaufort scale β
bf

, largely overlapped with zero and there was therefore low support for 

including this effect in the model with p(g
bf

=1)= 0.004. In contrast, there was a relatively strong negative effect of 

visibility on detectability (higher visibility code=lower visibility=lower detectability), with the entire distribution for 

β
vs

 falling below zero [p(g
vs

=1)=1]. There was also support for inclusion of observer effects [p(g
bs

=1)=1], with both 

positive and negative effects reflecting relatively high and low counts by different observers. A total of 35 different 

observers were used over 4 years between North and South stations; 15/35 counted in multiple years (2 years = 7, 3 

years =4, 4 years=4). The Posterior medians for observers’ effects ranged from -0.59 to 0.80, but only five observer 

effects (all positive) had posterior distributions that did not include zero, and the majority of observer effects 

overlapped significantly with zero. 
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Table 2: Parameters of models for detectability, p. All estimates are presented as the 0.025,0.50, 0.975 highest density 

probability intervals of the posterior probability distribution, plus the probability of inclusion in a model (if tested), given by the 

posterior probability p(g=1) of each indicator variable g. Observers are arbitrarily numbered, differently for each year.  

 2006/07 2007/08 2009/10 2010/11 

 

Detection model 

 

    

po 0.75, 0.80, 0.85 

 

0.75, 0.80,0.85 0.75, 0.80,0.85 0.75, 0.80,0.85 

βbf [p(gbf=1)] -19.34, -0.003, 19.98 

[0.004] 

-19.34, -0.003, 19.98 

[0.004] 

-19.34, -0.003, 19.98 

[0.004] 

-19.34, -0.003, 19.98 

[0.004] 

βvs [p(gvs=1)] -0.38, -0.30, -0.20  

[1] 

-0.38, -0.30, -0.20  

[1] 

-0.38, -0.30, -0.20  

[1] 

-0.38, -0.30, -0.20  

[1] 

σob [p(gbs=1)] 0.26, 0.37, 0.54  

[1] 

0.26, 0.37, 0.54  

[1] 

0.26, 0.37, 0.54  

[1] 

0.26, 0.37, 0.54  

[1] 

Observer 1  -0.36, 0.02, 0.49 0.03, 0.37, 0.81 -0.42,-0.24, 0.06 -0.13, 0.08, 0.30 

Observer 2 0.03, 0.37, 0.81 -0.78, -0.03, 0.70 -0.09, 0.30, 0.81 -0.36, 0.02, 0.46 

Observer 3 -0.24, -0.07, 0.11 -0.24, -0.07, 0.11 0.03, 0.37, 0.81 -0.42, -0.24, 0.06 

Observer 4 -0.42, -0.01, 0.49 -0.42, -0.24, 0.06 -0.13, 0.08, 0.30 -0.25, 0.01, 0.29 

Observer 5 -0.04, 0.14, 0.35 -0.13, 0.08, 0.30 -0.24, -0.07, 0.11 0.16, 0.43, 0.73 

Observer 6 0.06, 0.42, 0.83 -0.04, 0.14, 0.35 -0.27, -0.06, 0.18 -0.04, 0.14, 0.35 

Observer 7 -0.17, 0.11, 0.46 -0.18, 0.19, 0.61 -0.04, 0.14, 0.35 -0.50, -0.13, 0.26 

Observer 8 -0.39, -0.16, 0.07 -0.17, 0.11, 0.46 0.12, 0.33, 0.59 -0.39, -0.16, 0.07 

Observer 9 0.12, 0.33, 0.59 0.12, 0.33, 0.59 -0.25, 0.01, 0.29 -0.09, 0.23, 0.60 

Observer 10 - -0.39, -0.16, 0.07 -0.08, 0.26, 0.64 -0.27, -0.06, 0.18 

Observer 11 - - -0.71, -0.43, 0.13 0.31, 0.80, 1.46 

Observer 12 - - -0.66, -0.37, 0.07 -0.54, -0.29, 0.04 

Observer 13 - - -0.42, 0.00, 0.49 -0.75, -0.22, 0.33 

Observer 14 - - -0.63, -0.13, 0.40 0.12, 0.33, 0.59 

Observer 15 - - 0.31, 0.80, 1.46 -0.73, -0.29, 0.14 

Observer 16 - - -0.18, 0.19, 0.61 -0.18, 0.19, 0.61 

Observer 17 - - 0.16, 0.43,0.72 -0.70, 0.02, 0.76 

Observer 18 - - -0.39, -0.16, 0.07 -0.63, -0.13, 0.40 

Observer 19 - - -0.22, 0.22, 0.72 -0.83, -0.59, 0.36 

Observer 20 - - -0.28, 0.14, 0.59 -0.24, -0.07, 0.11 

Observer 21 - - -0.18, 0.28, 0.83 -0.21, 0.11, 0.47 

Observer 22 - - - -1.05, -0.49, 0.06 

 

 

 

Detectability also varied with changes in whale abundance during the migration, as shown by the extent of 

extrapolation from the daily summed counts (effort adjusted) to the estimated daily abundances (Figure 1). 

Detectability declined with increasing abundance, with a greater proportion of whales estimated to be missed as 

more whales passed during busy watch periods. In general, changes in abundance during the migrations were 

adequately described by a Normal curve over time, but there was greater uncertainty in the tails of the distribution 

resulting from generally sparse coverage. The Normal trend was useful for comparing migration timing: the median 

of the curve midpoints was 53.5 days since December 01 (23-24
th

 of January), ranging between 49 and 57 days. 

However, there were some notable deviations from the Normal trend, with estimates from the year-specific non-

parametric trend model being favored for some days in each of the four years. In particular, there was a high 

probability in favor of the Specific model [p(z=0)>0.75] on 9 days in 2006/7, 9 days in 2007/8, 16 days in 2009/10 

and 11 days in 2010/11, representing key departures from the Normal migration trend. The summed (model-

averaged) estimates of migration abundance ranged from a posterior median of 17,820 (95% HPDI = 16,150-

19,920) in 2007/8 to 21,210 (95% HPDI = 19,420-23,230) in 2009/10, consistent with previous estimates (Figure 2). 

These new estimates were also relatively precise with coefficients of variation (CV = Posterior Standard Deviation / 
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Posterior Median) ranging from 0.04 to 0.06 (median= 0.05), but nonetheless the 95% HDPI’s of all four estimates 

overlapped.  

 

 

 
 
Figure 1. Observed whale passage rates expressed as total counts per day/ proportion of day observed (circles) and fitted 

migrations models (lines) for the four southbound gray whale migration counts from 2006/7 to 2010/11. Solid circles represent 

counts from a second watch station, when operating. The broken line represents a hierarchical Normal model for migration and 

the solid line represents a semi-parametric model of penalized splines; the abundance estimate for each day (95% highest 

posterior density interval shown by vertical lines) is a model averaged compromise between the migration models, and these 

were summed to estimate the overall abundance for the migrations. 
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Figure 2: Gray whale abundance estimates for each of 23 southbound migrations with an end year between 1967 and 2007 (open 

squares, with 95% confidence intervals; from Laake et al., 2012) together with the four recent migrations reported here (closed 

squares, with 95% highest posterior density intervals).  

 

 

 

DISCUSSION 

 

The new counting method adopted here was intended to reduce reliance on the ability of single observers acting 

independently to record and track distinct whale groups. By adopting teams of paired observers working together, 

with the benefit of a real-time computerized tracking and visualization tool, this approach has proved successful in 

increasing detection probability (Durban et al., 2011) and also reducing variability in detections due to observer 

effects. Although still present, the magnitude of observer effects estimated from the new counts (Table 2) was 

generally not as great as those apparent with the traditional counting approach (see Laake et al., 2012, Table 7). 

Furthermore, our method for estimating detectability has departed from the mark-recapture approach of matching 

detections and non-detections of specific pods by independent observers. Instead we based inference on total watch 

period counts that were not sensitive to differential lumping and splitting of pods by observers, and avoided the 

assumptions required to match observed pods between pairs of observers. Instead, we have shown how tallied watch 

period counts from two (or more) observer pairs counting simultaneously can lead to similar inference when 

analyzed using the N-mixture approach (Royle, 2004).  

 

This “N-mixture” approach  has been successfully used to estimate abundance and detectability from replicate count 

data in cases where it has not been possible to match repeat sightings of individuals (e.g. Kery et al., 2005; Joseph et 

al., 2009, Chelgren et al., 2011).  It allows models for linking detectability to key covariates, as in previous gray 

whale assessments (e.g. Laake et al., 2012), but notably also accounts for variation in p relative to changes in 

abundance during the migration. Previously, two contrasting approaches have been used to model changes in 
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abundance over the course of the annual gray whale migration: either by assuming a parametric model to determine 

the shape of the migration curve (Buckland et al., 1993) or by fitting a non-parametric smoother to allow the data to 

determine the trend in abundance over time (Laake et al., 2012). Here we drew on elements of both these 

approaches in a flexible framework using Bayesian model selection between a parametric model for a common 

migration trend and a semi-parametric model that estimated the time trends independently for each year; the 

resultant migration curve was a weighted compromise between models, allowing for key departures from the 

common trend. 

 

The abundance estimates produced for 2006/7, 2007/8, 2009/10 and 2010/11 were internally consistent, consistent 

with previous estimates and indicative of a stable population (Figure 2). The 95% HDPI’s of all four estimates 

overlapped, and there was substantial overlap between the 95% HDPI from the 2006/7 estimate with the 95% 

confidence intervals of the estimate for the same migration produced using the previous counting and estimation 

approach (Laake et al. 2012). Further, our estimates are very similar to the predictions of Punt and Wade (2012) 

based on assessment models for the full time series; their baseline model prediction for 2009/10 had 90% posterior 

density intervals ranging from 17,726 to 23,247; the posterior distribution for our 2009/10 estimate was centered 

within these intervals at 21,210 (95% HPDI = 19,420 – 23,250). It is noteworthy that the estimates produced using 

our approach were relatively precise with CVs ranging from 0.04 to 0.06 (median= 0.05) in contrast to CVs ranging 

from 0.06 to 0.09 (median = 0.08) for the 23 previous estimates. 

 

This consistency provides a level of confidence in our approach and resultant estimates, but nonetheless there are 

limitations to address. Despite our flexible approach for describing abundance trends throughout the migration, 

precise inference about the shape of the migration curve relies on count data being collected from throughout the 

migration time span. During at least 3 / 4 years reported here, count data were sparse (or non-existent) during the 

tails of the migration, resulting in uncertainty over the shape of the abundance curve. While this uncertainty was 

propagated into inference about overall abundance in our Bayesian inference using MCMC sampling, the resulting 

imprecision will ultimately constrain power to detect between-year changes in migration patterns and abundance. 

 

Previous work has shown that the new counting approach produces estimates of pod size that are typically larger 

(and presumably less biased) than the traditional counting approach (Durban et al., 2010), likely because the 

computerized tracking software facilitates more repeated observations of the same groups. In fact, we have assumed 

here that estimates of pod size using this observation approach are effectively unbiased and have not been rescaled 

to tally watch period counts. This is an assumption that remains to be tested, but suitable calibration experiments are 

difficult to design and implement, particularly due to the inherently subjective differences between observers in 

lumping and splitting whales to define groups. Similarly, although observer effects have been accommodated in the 

model for detectability, it is clear that too many observers (35 in total) counted too infrequently to allow precise 

parameterization of their relative effects on detectability in many cases. This will have resulted in further 

imprecision. 

 

Although there may be field protocols that could be adapted to address these limitations within the current approach, 

we recommend further modernization of the observation process. Specifically, more accurate information could be 

gleaned from observations recorded with high-definition video files to allow subsequent review and re-review, 

rather than relying on instantaneous assessment by visual observers. The use of infra-red sensors would further 

allow for 24-hour monitoring (e.g. Perryman et al., 1999) and provide greater coverage of the entire migration 

during acceptable weather conditions; automated blow detectors (e.g. Santhaseelan et al., 2012) can be developed to 

eliminate observer effects and standardize detectability to provide counts with minimal (and quantifiable) bias. 

These extensions would further serve to build a more robust and automated observation model to combine with the 

flexible abundance model for the migration process described in this paper. 
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