

Figure 10. On-effort observers rotate through three positions: 25×150 power (big-eye) binoculars on the port (left) side of the flying bridge, data recorder/observer in the center of the flying bridge, and 25 $\times 150$ power binoculars on the starboard (right) side of the flying bridge. While on effort, the port and starboard observers scan 180° forward of the ship. Each observer scans out to the horizon from 90° abeam on their side of the ship to 10° on the opposite side of the bow (i.e., each observer scans 100° in total). This figure is taken from Kinzey et al. (2000).

X. FIELD TRAINING (J.C. Salinas and J. Redfern)

The second day of the workshop included five hours of field training on board a yacht (Figure 12). On the yacht, participants had the opportunity to apply data collection protocols and use new equipment. Data collection protocols were applied using two groups of three people one group of three surveyed from the starboard side of the yacht, while the other surveyed from the port side. While this observation configuration would not be used on actual surveys, it was used during training to ensure that all participants had an opportunity to practice the data collection protocols. Each team worked for one hour and rotated through the three observing positions (right side, data recorder, and left side) every 20 minutes. All participants had the opportunity to fill out sightings and effort logs and estimate group sizes, distance to sightings, and angle to sightings. Each participant was provided with a group size log so that they could independently estimate group size. Numerous humpback whale sightings were made during the training. The yacht approached some of the sightings to simulate conducting a survey in closing mode.

TRAINING WORKSHOP TO DEVELOP BEST PRACTICES FOR COLLECTING DATA TO ESTIMATE MARINE MAMMAL ABUNDANCE ON THE PACIFIC COAST OF SOUTH AMERICA

Salinas, Ecuador 18-20 de August 2015

Workshop Report
August 2015

