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The seabed can be classified using data from vertical, split-beam echosounders. This was demonstrated recently using a model parameterized with
acoustic estimates of slope, roughness, normal-incidence backscattering strength, and variation of backscattering strength by frequency and inci-
dence angle. These seabed classifications were interpreted and validated using published surficial geology maps, but the acoustic data indicated
greater spatial variability. Here, classifications of sediment grain or feature size are ascribed to areas �10 m2. First, images of the seabed in the study
area are ascribed, based on per cent coverage, to seven primary classes ranging from mud through high-relief rock, and 25 primary–secondary
classes. Then, a refined seabed classifier, based on the acoustic model parameters is trained, using a nearest-neighbours algorithm, on a subset
of the class data. The classifier accurately predicts 96% of the primary classes, and 93% of the primary–secondary classes from an independent
data subset. These methods should be useful for characterizing, mapping, and quantifying potential seabed habitat domains of demersal fish
and benthic invertebrates.

Keywords: acoustic backscatter, benthic, demersal, echosounder, habitat, k nearest neighbours, model, roughness, ROV, slope, supervised
classification, validation images.

Introduction
Acoustic seabed classification
Classification and prediction of seabed characteristics commonly
involves features of the first (Hamilton, 2014) or first and
second seabed echoes measured with single-beam echosounders
(Anderson et al., 2008). The features may be correlated with
classes of physical or image samples (e.g. Heald and Pace, 1996;
Tsehmahman et al., 1997; Zimmermann and Rooper, 2008) to
provide seabed classification over large areas. Although single-beam
classification models are widely used (Madricardo et al., 2012),
the commonly used parameters may not contain sufficient informa-
tion to accurately characterize seabed (Hamilton, 2014). However,
with consideration of the dependence of echo intensity on incidence
angle, u, echo features may more accurately classify sediment grain
size and surface roughness (Sternlicht and de Moustier, 2003; van
Walree et al., 2006; De and Chakraborty, 2011; Haris et al., 2011).
This “angle-response” of the seabed surface backscattering strength,

Ss(u), may be measured with multibeam echosounders (e.g. Fonseca
and Mayer, 2007; Fonseca et al., 2009; Jackson et al., 2010; Kloser
et al., 2010; Lamarche et al., 2011) or split-beam echosounders
(Cutter and Demer, 2014). The “frequency-response”, Ss( f ), mea-
sured with multifrequency or broadband echosounders (Pace and
Ceen, 1982; Jia and Courtney, 2001), may further improve seabed
classifications. Measures of both the angle- and frequency-response
of seabed surface backscattering, Ss(u, f ), as well as volume back-
scattering, allow inversion of “geoacoustic” models to predict
seabed properties such as grain size, surface porosity and roughness,
and volume heterogeneity. Using data from a ship-mounted multi-
beam echosounder, such classifications are range-dependent and
often have resolutions �103 –104 m2.

Model validation
Acoustic seabed classification requires validation with independent
observations ideally having equivalent capability to resolve seabed
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features. Validation data are commonly obtained from sediment
samples (Hamilton, 2014), underwater images from cameras on
human-occupied submersibles (Yoklavich et al., 2000; Anderson
and Yoklavich, 2007), towed vehicles (Kloser et al., 2010), or remote-
ly operated vehicles (ROVs) (Nasby-Lucas et al., 2002; Dartnell and
Gardner, 2004; Rooper and Zimmermann, 2007; Whitmire et al.,
2007; Ierodiaconou et al., 2011; Rattray et al., 2014), or a combin-
ation of images and sediment samples (e.g. Dartnell and Gardner,
2004; van Walree et al., 2005). These data typically have much
higher resolution, but cover a much smaller portion of the study
area compared with the acoustic classes (Kostylev et al., 2001;
Dartnell and Gardner, 2004; Kloser et al., 2010; Young et al., 2010;
Brown et al., 2011; Lamarche et al., 2011; Todd and Kostylev,
2011; Krigsman et al., 2012). Consequently, the accuracy of the
model predictions could be improved by increasing the resolution
of the acoustic samples and the coverage of the validation data
(Cutter and Demer, 2014).

Split-beam echosounders and multifrequency biplanar
interferometric imaging
Cutter and Demer (2010) developed the multifrequency biplanar
interferometric imaging technique (MBI) for processing data
from multiple-frequency echosounders with, overlapping, split-
beams. With knowledge of the beam orientations, MBI provides
measures of Ss(u, f ), and estimates of seabed slope and roughness
for many samples of the seabed echo received in each beam
(Cutter and Demer, 2014). These data, accumulated from a few
transmissions along a survey track, may be used to create high-
resolution seabed classification models.

Building upon the methods detailed in Demer et al. (1999, 2009),
Conti et al. (2005), and Cutter and Demer (2010), Cutter and Demer
(2014) classified the seabed at 43-Fathom Bank in the Southern
California Bight (SCB) using metrics derived from MBI processing

of data collected using a calibrated multifrequency (38, 70, 120, and
200 kHz) split-beam echosounder (Simrad EK60). They used mea-
sures of Ss(u, f ) (see Figure 2 in Cutter and Demer, 2014) to solve a
log-linear model for normal-incidence backscattering strength (Ss0)
and coefficients for the angle- (Ca) and frequency-dependence (Cf)
of Ss. They also evaluated metrics for seabed slope (�u) and roughness
(R) distributions.

Cluster analysis of Ss0, Ca, Cf , �u, and R produced seven
seabed classes with attributes determined by their spatial corres-
pondence with features evident from high-resolution bathymetry
(Cutter and Demer, 2014) and surficial geological attributes
(Goldfinger et al., 2007). Despite the high spatial resolution of the
MBI-based metrics, validation of the unsupervised seabed classi-
fication model was limited by the low resolution of the surficial
geology (Figure 1) (also see Figure 5 of Cutter and Demer, 2014).
Consequently, the fine spatial-scale variation in the acoustic para-
meters, potentially indicative of important seabed habitat features,
was necessarily ignored.

Matching scales
In this study, we improve seabed classification using the acoustic
model data of Cutter and Demer (2014) by developing and statistic-
ally evaluating the performance of a supervised classification model
that is trained by independent samples of seabed class from video
images collected using an ROV. With this approach, we aim to
better match the resolution of model predictions of seabed class to
seabed features that comprise habitat for demersal and benthic
fish and invertebrates.

Methods
Methods for seabed classification, intended for general application,
are developed and their efficacy demonstrated using data from the
43-Fathom Bank, located �70 km west of San Diego, California.

Figure 1. Shaded relief bathymetry map from Cutter and Demer (2014) overlaid with the substrate classes (primary class regions indicated by
greyscale level and bounded by lines) and labelled with primary and secondary substrate classes (Ss, sand; Sb, sand and boulder; Sg, sand and gravel/
pebble; Sc, sand and cobble; Cs, cobble and sand; Cc, cobble and cobble; Hh, high-relief rock; Hs, high-relief rock and sand; Bb, boulder; Bh, boulder
and high-relief rock) in Goldfinger et al. (2007). The bathymetry and acoustic model data (see Cutter and Demer, 2014) suggest that there are some
misclassifications, e.g. in the circled area, the primary or secondary class is evidently boulder or rock.
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The bank was surveyed multiple times, both with echosounders
deployed on a ship, and with cameras deployed on a ROV (Demer
et al., 2009; Cutter and Demer, 2010, 2014). Earlier results reveal
that the top of the bank has a nearly circular terrace at �100 m
depth with a high-relief (�20 m), rocky peak in the centre that
rises to �80 m depth (Figure 2; Cutter and Demer, 2014) that is
habitat for a resident rockfish assemblage (Demer et al., 2009).

Acoustic data
The acoustic data for this study were acquired from a calibrated,
four-frequency (38, 70, 120, and 200 kHz) split-beam echosounder
system (Simrad EK60), using transducers installed in the extendible
centreboard of NOAA Fisheries Survey Vessel Bell M. Shimada (for
more detail, see Cutter and Demer, 2014). As in Cutter and Demer
(2014), data from .66 000 transmissions were processed with MBI
to estimate values of Ss0, Ca, Cf , �u, and R for each 30-transmission
ensemble.

Image data
From 2004 through 2012, 37 strip-transect surveys were conducted
at 43-Fathom Bank using two different ROVs. Generally, the tran-
sect locations and directions were chosen to encounter fish targets
observed acoustically, and video images were used to identify fish
species and estimate their lengths (Demer et al., 2009). The
images were also analysed to ascribe seabed classes. In 2012,
several additional transects were conducted specifically to classify
the seabed in locations that were not previously sampled (Figure 2).

Transects conducted between 5 March 2004 and 29 October 2010
used a Phantom DS4 ROV (Deep Ocean Engineering, Inc.) with a
colour-video camera (Sony FCB-IX47C with 468 × 720 pixel reso-
lution and an 18× optical zoom). Transects conducted between 17
April 2012 and 29 October 2012 used a custom ROV (HDHV-ROV,
NOAA Southwest Fisheries Science Center) with a high-definition
video camera [1920 × 1080 pixel resolution, interlaced (1080i);
Mini Zeus, Insite Pacific, Inc.]. Both cameras were mounted on a ro-
tating camera tray. The imaged width varied with the horizontal
viewing angle of the camera, the pitch of the camera tray, and the
height of the camera above the seabed; the pitch and altitude of
the camera may be modulated by the vertical relief of the seabed,
the type of survey being conducted, or both. During these surveys,
both cameras were oriented �308 below horizontal and �1 m
above the seabed. The measured horizontal viewing angle was 508
for the Phantom ROV camera and 628 for the HDHV-ROV
cameras; consequently, the average imaged width, estimated based
on the camera altitude, pitch, and horizontal viewing angle, was
2.6 and 4.4 m for the Phantom and HDHV-ROV cameras, respect-
ively. Two parallel laser calipers (spaced 20 and 61 and 40 cm apart
on the Phantom and HDHV ROVs, respectively) provided a con-
stant measurement scale that analysts used to judge feature sizes
for describing seabed class. All video footage was recorded to
digital video (DV) tape (DVCAM or HDV format for standard
and high-definition video, respectively) and later used for character-
izing the seabed. ROV positions were estimated using an ultra-short
baseline (USBL) acoustic tracking system (Track-Point II-Plus, ORE
Offshore for the Phantom ROV; TrackLink 5000, LinkQuest, Inc. for

Figure 2. The 43-Fathom Bank study area, viewed from the southwest, with acoustic-survey tracklines (above) and ROV transects [symbolized by
the primary seabed classes (Cp) observed in video images] on the acoustically mapped bathymetry surface.
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the HDHV-ROV) and differential global positioning system (dGPS,
CSI Wireless dGPS MAX). The length of each transect was estimated
from the speed of the ROV, which was measured using a Doppler
velocity log (DVL; Workhorse Navigator, Teledyne RD
Instruments). All data were time-stamped and logged synchronous-
ly using integrated navigation software (WinFrog, Fugro Pelagos,
Inc.). ROV positions estimated from the USBL systems were
smoothed using a Kalman filter to eliminate bad navigation
system observations and artefacts of sudden apparent shifts of pos-
ition.

Image analysis
Approximately 57 000 video images of the seabed, collected every
�1–2 s along the ROV transects, separated by �0.1–4.3 m, were
visually classified. Classifications were made at the beginning of
each transect, changed according to perceived changes in the
seabed composition [similar to Stein et al. (1992) and dynamic seg-
mentation in a GIS (Esri, 1994)], and checked by a second analyst.
The classes are based on sediment grain size (Wentworth, 1922;
Folk, 1974) and relief for bedrock outcrops. The classes correspond
to the “seabed substrate” classes of the scheme used by Goldfinger
et al. (2007). The classes are: mud (M, ,0.06 mm), sand (S,
0.06–2 mm), pebble (P, 2–64 mm), cobble (C, 64–256 mm),
boulder (B, 0.25–3 m), low-relief rock (L, ,0.25 m), and high-
relief rock (H, .0.25 m) such that rock classes are distinct from
boulders by their spatial continuity. Primary classes, Cp, designated
by a capital letter, comprise the majority of the area within a seabed

image (Figure 3); secondary classes, Cs, designated by a lower-case
letter, comprise a minority of the imaged area. Combined primary
and secondary seabed classes (Tables 1 and 2), Cps, are designated
by upper- and lower-case letter combinations, e.g. C ps ¼ Sc for
images with mostly sand and some cobble.

Classification
Assigning seabed classes to acoustic metrics for supervised
classification
For the supervised classification of the seabed, we developed a clas-
sifier trained using spatially coincident acoustic-model data and
image-based seabed class data. Within a random subset of the full
dataset, acoustic metrics, Ss0, Ca, Cf , �u, and R, defined in Cutter
and Demer (2014) were collected within each homogenous area,
Ah = pRh

2, where the homogeneity radius, Rh, is the maximum
value, ≤ 30 m, for which all Cp are the same (Figure 4). Training
subsets from 10 to 50% of the full dataset were tested, but 30%
(9275 observations) was ultimately used. Subsets were generated
by iterative resampling of the full dataset until each Cp or Cps was
represented by at least six observations. Generally, the subsets
included more than 20 images with mud and many more of the
other classes. The median values (med[]) of the acoustic metrics
within each Ah comprise a class-feature vector, V,

V = {med[Cf ], med[Ca], med[Ss0], med[R], med[�u]}.

k-nearest neighbours classifier
A k-nearest neighbours (kNN) classifier model (Duda et al., 2001)
was used to predict Cp and Cps values (̂Cp and ̂Cps) and for each
of the feature vectors in the testing subset, based on a majority
voting scheme and their k nearest neighbours, according to the
Mahalanobis distance in the multi-variate space of the acoustic
metrics. The Mahalanobis distance, which incorporates the covari-
ance of V (Davis, 1986), was used instead of the Euclidean distance
because it provided better prediction accuracies for ̂Cp and ̂Cps

(comparison not shown). Values of k from 1 to 500 were tested,
but the optimal value was 1. All five features, i.e. each acoustic
metric, passed the sequential floating forward selection (SFFS)
method (Pudil et al., 1994), as implemented by Pohjalainen et al.,
(2015) and were retained for classification. Training and prediction
of ̂Cp and ̂Cps were done independently.

Performance evaluation and prediction
Uncertainty in thêCp and ̂Cps were assessed by comparisons with the
Cp and Cps indicated by the ROV images in the test subset. Overall
prediction accuracy (pacc) and error (perr) were estimated by
iteratively generating new random training and test subsets.
Additionally, a fourfold cross-validation was used to provide an al-
ternative estimate of perr. The cross-validated kNN model was then
used to predict ̂Cp and ̂Cps for the acoustic metrics in the entire
dataset. The most frequent class (mode) and number of classes of
̂Cp and ̂Cps within 50-by-50 m grid cells were calculated for the
entire study area.

Results
Seabed class
A total of 57 859 assignments of primary (Cp), secondary (Cs), and
primary–secondary seabed class (Cps) were obtained from the
ROV’s video imagery. Sand, boulder, and high-relief rock were the

Figure 3. Examples of ROV images with visually identified seabed
classes (defined in Table 2) observed at the 43-Fathom Bank. Labels
indicate primary–secondary seabed class (Cps) with the primary (Cp)
capitalized and secondary (Cs) in lower case.
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most commonly observed primary and secondary classes (Table 1).
Four of the 29 observed Cps classes were combined (�) with similar
classes, resulting in 25 Cps classes (Table 2) because of few (,60)
observations (Lb � Ll, Hc � Hb, Bl � Bb) or to avoid potential

misclassification of Cs as mud (Lm � Ls). This causes slight differ-
ences in the percentage of Cs in Table 1 and column totals in Table 2.
Also, note that not all primary–secondary combinations were
observed (Table 2).

Figure 4. (a) Echosounder (dots) and ROV-video image samples (symbolized by Cp; refer to Table 2 for symbol codes) at 43-Fathom Bank. The
dashed circle indicates the area of homogeneity (Ah) defined by radius (Rh), within which the primary class (Cp) of all image samples is the same (H,
in this case). (b) Distributions of the acoustically derived metrics within Ah : coefficients for the angle- (Ca) and frequency-response (Cf ) of Ss ;
normal-incidence backscattering strength (Ss0); roughness (R); and slope (u) (for details, see Cutter and Demer, 2014).

Table 2. Percentages of 57 859 primary–secondary classes (Cps) from video images of the seabed at the 43-Three Fathom Bank.

Secondary class

TotalMud (m) Sand (s) Pebble (p) Cobble (c) Boulder (b) Low-relief rock (l) High-relief rock (h)

Primary class
Mud (M) 0.0 0.0 0.0 0.3 1.3 0.0 0.0 1.6
Sand (S) 0.0 30.0 1.6 0.5 8.2 0.2 2.4 42.9
Pebble (P) 0.0 1.3 0.1 0.0 0.0 0.0 0.0 1.4
Cobble (C) 0.2 0.1 0.0 1.2 2.8 0.0 0.0 4.4
Boulder (B) 4.8 11.3 0.0 0.9 14.2 0.1 0.2 31.4
Low-relief rock (L) 0.4 0.3 0.0 0.0 0.1 1.5 0.0 2.3
High-relief rock (H) 1.2 6.2 0.0 0.1 4.4 0.0 4.2 16.0
Total 6.6 49.4 1.7 2.8 31.0 1.7 6.7 100

Primary class (Cp) is capitalized and secondary class (Cs) is lower case.

Table 1. Summary of video image seabed classifications: overall frequency, and percentage (in parentheses) of primary (Cp) and secondary
class (Cs) (total n ¼ 57 859).

Class

Mud (M) Sand (S) Pebble (P) Cobble (C) Boulder (B) Low-relief rock (L) High-relief rock (H)

Level
Cp 909 (1.6) 24 805 (42.9) 838 (1.4) 2530 (4.4) 18 161 (31.4) 1344 (2.3) 9272 (16.0)
Cs 3903 (6.7) 28 367 (49.0) 1028 (1.8) 1755 (3.0) 17 694 (30.6) 1011 (1.7) 4101 (7.1)

Remote sensing of habitat characteristics 1969
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Characteristic distance
For many areas outside of the rocky peak region, Rh was at least 30 m,
the largest radius tested, and consistent throughout entire
ROV transects, indicating homogeneous seabed class and gradual
spatial variation. However, within the rocky regions, many images
had Rh values of 0 m (indicating that the value only applied to a
single location) to 2 m, indicating high heterogeneity or a transition.

Predicted seabed class
The geographic distribution of the seven predicted primary classes,
̂Cp, was mostly consistent with the results of previous studies of the
seabed geology at 43-Fathom Bank (Goldfinger et al., 2007; Cutter
and Demer, 2014). Sand was the most common ̂Cp, particularly
on the terrace (Figure 5). The rocky peak comprises predominantly
high- (H) and low-relief rock (L) and boulder (B). The surrounding
terrace is mostly sand (S) and some pebble (P). The deeper south-
eastern flank is mostly cobble (C) with patches of sand. The small,

deep area on the northwest flank includes cobble. The steep slope

along the western edge of the bank is mostly boulder. There is

mud (M) in only a few locations on this steep slope. High-relief

rock extends from the central peak to the south, and down the

steep western slope.
The 25 predicted primary–secondary classes, ̂Cps, were domi-

nated by Ss (Figure 5), which covered most of the flat terrace. The

terrace flats also contained Pp and Ps. The rocky peak area, and

the adjacent area extending to the south-southwest off the western

edge of the bank were composed of Hh, Hb, Hs, and Bb. The steep

western slope of the bank was mostly Bb. The deep flank in the

southeastern part of the study area included mostly Cb, Cc, and Cs.
The modal̂Cp of the rocky peak is predominately H and B, with a

moderate diversity (the number of primary classes in each 50-m grid

cell) of 3–4. The eastern-southeastern edge of the rocky peak has

areas of higher diversity, 5–6, and steep slope in the southwest has

the highest diversity, 6–7 classes per cell.

Figure 5. Mode of predicted seabed classes (a) ̂Cp and (b) ̂Cps, within 50-by-50 m grid cells for the entire study area, and (c) ̂Cps overlaid on the
shaded-relief bathymetry surface (legend for b applies to c); white cells indicate no data.
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The modal ̂Cps of the rocky peak is dominated by Hb, Hs, Bs, Bc,
Bb, and Hh and has high diversity (.8 ̂Cps classes per cell) along the
east-southeast edge. The terrace is principally Ss with low diversity,
1–4 classes per cell, and the deep southeast flank has large patches of
Cb and Cc with generally low to moderate diversity. The steep
western slope is mostly Bb, except in two deep locations where
there are large patches of Hh. The steep slope to the southwest
and a deep area off the northwest of the bank have large regions of
high diversity with .8 classes per cell.

Areal coverage of the ̂Cp, based on the modal ̂Cp grid, is highly
variable, for example, sand accounts for 68% (10 km2), boulder
15% (2.3 km2), high-relief rock 4.5% (0.7 km2), and mud only
0.05% (0.008 km2) (Table 3). For modal ̂Cps, Ss is most common,
accounting for 57% (9 km2), followed by Bb (7.6%, 1.2 km2), Cb

(7.5%, 1.1 km2), Bs (5.5%, 0.8 km2), and Cc (2.6%, 0.4 km2)
(Table 3). Sb, Ps, and Hs each cover just over 2% (0.3–0.4 km2).

Classifier performance
Sensitivity to classifier parameters
Classifier performance varied with classifier parameters, particular-
ly k and the distance metric. The accuracy of the kNN classifier
decreased with increasing k. As k increased from 1 to 10, the accuracy
of the kNN classifier decreased from 96 to 89% for̂Cp and from 93 to
83% for ̂Cps (Table 4). The decrease was asymptotic, and stabilized at
�70% for k ≥ 200. Compared with results using the Mahalanobis
distance, using the Euclidean distance resulted in prediction accur-
acy that was lower by �1% for k ¼ 1 to 2.5% for k ¼ 10.

The kNN classifier performance was best using k ¼ 1 and using
the Mahalanobis distance. Based on application to the test
(holdout) subsets, the classifications had a mean accuracy of 96%
(4% error) for ̂Cp and 93% (7% error) for ̂Cps. N-fold cross-
validation errors, 5% for ̂Cp and 7% for ̂Cps, were slightly higher
than the holdout errors (Table 5).

Each new run of the classifier entails selection of a new random
test and training subset from the total dataset. As such, the classifier
performance varies slightly with each run. For .100 classifier
iterations, the test-set classification error was 3.9% (standard
deviation ¼ 0.2%).

Contingency table analysis
Although the overall prediction accuracy, estimated using the
holdout method, was 96% correct, the prediction accuracy for
each class ranged from �89 to 98% (Table 5) but varied for each
realization of the model run for different subsets. In the example
presented, the worst case, H had 6% misclassified as S and 5% as
B. The best accuracies were for S and C, each with only 2% misclas-
sified. Most of the few misclassification of S were erroneously attrib-
uted to M, but some were linked with each of the other classes. A few
M (5%) were misclassified as B or H. Rarely was C incorrectly pre-
dicted to be S or B, and only once misclassified as M. A total of 4% of
B were misclassified as S, C, L, or H. Except for M, each of the other
classes were occasionally misclassified as S. This is because the
43-Fathom Bank has large areas of sand, and areas with rock and
boulder are in proximity to sand.

Discussion
Accurate definition of the locations and extents of seabed habitats
could greatly reduce uncertainty of fishery-independent population

Table 3. Coverage area of modal ̂Cp and ̂Cps based on 50 m grid-cell
map.

Primary Area (%) Primary – secondary Area (%)

M 0.05 Mc 0.03
Mb 0.13

S 67.9 Ss 59.61
Sp 1.67
Sc 1.29
Sb 2.28
Sl 0.65
Sh 1.84

P 2.4 Ps 2.30
Pp 0.08

C 9.7 Cm 0.10
Cs 0.26
Cc 2.58
Cb 7.45

B 15.1 Bm 1.11
Bs 5.51
Bc 0.07
Bb 7.61
Bh 0.08

L 0.5 Ls 0.36
Ll 0.30

H 4.5 Hs 2.12
Hm 0.58
Hb 0.61
Hh 1.36

Total coverage area is 15.1 km2. Because training and prediction of ̂Cp and ̂Cps

were done independently, summed per cent areas of ̂Cps may differ from per
cent ̂Cp.

Table 4. Accuracy, holdout error, and cross-validation error for the kNN classifications of primary (̂Cp) and primary–secondary classes (̂Cps) in
the training set using the Mahalanobis distance and for k ¼ 1:10.

̂Cp ̂Cps

k Accuracy Holdout error Cross-validation error Accuracy Holdout error Cross-validation error

1 0.962 0.038 0.049 0.934 0.066 0.072
2 0.945 0.055 0.068 0.915 0.085 0.102
3 0.941 0.059 0.069 0.906 0.094 0.109
4 0.930 0.070 0.087 0.896 0.104 0.125
5 0.923 0.077 0.092 0.882 0.118 0.139
6 0.915 0.085 0.104 0.872 0.128 0.148
7 0.911 0.089 0.112 0.860 0.140 0.163
8 0.900 0.100 0.118 0.850 0.150 0.169
9 0.896 0.104 0.123 0.845 0.155 0.174
10 0.892 0.108 0.133 0.837 0.163 0.182
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estimates of groundfish, and thereby improve the assessment and
management of rockfish (genus Sebastes) and other species. This
can be achieved efficiently using remote sensing methods such as
acoustics, images collected with an ROV, and the methods and
results of this study. Compared with unsupervised classification of
echoes, which may be a tenuous proxy for seabed class (Hamilton,
2011), our supervised classification method, trained using a large
image dataset, provides a reliable basis for delineating surficial geo-
logical attributes of groundfish habitats. Images are used because
physical sample collection and processing is time-consuming and
expensive, and there is uncertainty in the exact location of a
sample relative to an acoustic beam footprint. Furthermore, thou-
sands of seabed images were obtained from each ROV transect,
and although they provide less detailed information about the
substrate, they better discriminate features important to groundfish
habitats.

Notwithstanding the advantages of seabed imaging over other
validation methods, seabed classes may be misidentified (Rattray
et al., 2014). Image classifications may be biased by serial viewing,
feature scale, image-sensor resolution, lighting and orientation,
and distance from the camera to the seabed. For example, differences
in small grain sizes may not be visually discriminable. Pebbles may
be obscured by sand. Large boulders may be indistinguishable from
some low-relief rock. Seabed properties may vary within Ah, defined
only with respect to Cp, because of variation of the secondary class Cs

or proportional coverage of Cp.
If the classification scheme does not allow for an “other” class

group value, then all of the images and classifier predictions will
be assigned to one of the defined, but perhaps incorrect classes.
With recognition of the estimation uncertainty (Table 4), our new
map of seabed classes at the 43-Fathom Bank (Figure 5) can form
the basis of a high spatial-resolution map of rockfish habitat.

Grain size and relief are important to habitats of many benthic
and demersal organisms and can be sensed remotely using our
methods. Despite the significant advances facilitated by these
methods, the seabed classes in this analysis do not represent all of
the habitat characteristics that are important to the infauna, epi-
fauna, flora, or the demersal fish. For example, sand or gravel may
be composed of eroded quartz or fragmented bivalve-shells,
which comprise substrates that host different benthic faunal assem-
blages and attract different predators. Other factors, including dis-
solved oxygen and chlorophyll a concentrations, and salinity
(Juan-Jorda et al., 2009), epifauna and infauna (Thompson et al.,
2001; e.g. Krigsman et al., 2012), and water depth (Love et al.,

2009), are important for habitat characterization but were not con-
sidered for this study. However, because our principal species of
interest are rockfish, many of which are associated with high- and
low-relief rock and boulders (Anderson and Yoklavich, 2007; Love
et al., 2009; Young et al., 2010), subtle differences in fine-grained
sediments are not critical for this study. However, these sediment
types may be important for benthic infauna, which could in turn
be important to rockfish habitat. Our method should be able to dis-
criminate among the fine-grained sediments when spatial coverage
and training data sufficiently represent those conditions.

Conclusion
We developed a unique method for the prediction of surficial seabed
classes using data from hull-mounted, vertically oriented fisheries
echosounders (4-frequency EK60) processed using the MBI
imaging technique and fit to a simple model of acoustic backscatter
by frequency and incidence angle; then using a simple, five-feature
classifier that was validated using classified images collected by an
ROV. The classification resulted in .95 and .90% prediction ac-
curacy, for 7 primary and 25 primary–secondary seabed classes.
The map of modal primary–secondary seabed classes (Figure 5)
provides more detail about previously unresolved seabed features
at 43-Fathom Bank that may be important habitat for rockfish.
Employed on a broader scale, our method could refine prediction
of seabed habitat distributions for other fish and invertebrate
species, and possibly improved population estimates by incorporat-
ing more precise seabed class and habitat information into survey
design, by focusing sampling effort in appropriate habitat, and ana-
lysis, by refining estimates of habitat area used to calculate abun-
dance from estimates of density.

References
Anderson, J. T., Holliday, D. V., Kloser, R., Reid, D. G., and Simard, Y.

2008. Acoustic seabed classification: current practice and future
directions. ICES Journal of Marine Science, 65: 1004–1011.

Anderson, T. J., and Yoklavich, M. M. 2007. Multiscale habitat associa-
tions of deepwater demersal fishes off central California. Fishery
Bulletin, 105: 168–179.

Brown, C. J., Todd, B. J., Kostylev, V. E., and Pickrill, R. A. 2011.
Image-based classification of multibeam sonar backscatter data for
objective surficial sediment mapping of Georges Bank, Canada.
Continental Shelf Research, 31: S110–S119.

Conti, S. G., Demer, D. A., Soule, M. A., and Conti, J. H. E. 2005. An
improved multiple-frequency method for measuring in situ target
strengths. ICES Journal of Marine Science, 62: 1636–1646.

Cutter, G. R., and Demer, D. A. 2010. Multifrequency biplanar inter-
ferometric imaging. IEEE Geoscience and Remote Sensing Letters,
7: 171–175.

Cutter, G. R., and Demer, D. A. 2014. Seabed classification using surface
backscattering strength versus acoustic frequency and incidence
angle measured with vertical, split-beam echosounders. ICES
Journal of Marine Science, 71: 882–894.

Dartnell, P., and Gardner, J. V. 2004. Predicting seafloor facies from
multibeam bathymetry and backscatter data. Photogrammetric
Engineering and Remote Sensing, 70: 1081–1091.

Davis, J. C. 1986. Statistics and Data Analysis in Geology. John Wiley and
Sons, Hoboken, NJ. 646 pp.

De, C., and Chakraborty, B. 2011. Model-based acoustic remote sensing
of seafloor characteristics. IEEE Transactions on Geoscience and
Remote Sensing, 49: 3868–3877.

Demer, D. A., Cutter, G. R., Renfree, J. S., and Butler, J. L. 2009. A
statistical-spectral method for echo classification. ICES Journal of
Marine Science, 66: 1081–1090.

Table 5. Known (Cp) vs. predicted (̂Cp) primary seabed classes (% by
row) (see Tables 1 and 2 for definitions).

Predicted

M S P C B L H

Known
M 94.9 0.0 0.0 0.0 1.7 0.0 3.4
S 0.0 97.9 0.2 0.1 0.8 0.1 0.9
P 0.0 7.7 90.8 0.0 1.5 0.0 0.0
C 0.1 1.1 0.0 97.6 1.2 0.0 0.0
B 0.0 2.2 0.0 0.2 95.8 0.4 1.4
L 0.0 2.1 0.0 0.0 2.7 95.2 0.0
H 0.1 5.6 0.0 0.1 4.9 0.4 88.9

Values along the diagonal (italicized) indicate a total of 95% correct
predictions for 21 640 observations in the validation subset for this realization
of the model.

G. R. Cutter et al.1972

 at U
niversity of C

alifornia, Santa C
ruz on D

ecem
ber 16, 2016

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/


Demer, D. A., Soule, M. A., and Hewitt, R. P. 1999. A multiple-frequency
method for potentially improving the accuracy and precision of
in situ target strength measurements. Journal of the Acoustical
Society of America, 105: 2359–2376.

Duda, R. O., Hart, P. E., and Stork, D. G. 2001. Pattern Classification,
2nd ed. Wiley-Interscience, Hoboken, NJ, USA.

Esri. 1994. Dynamic segmentation. In Network Analysis, p. 263.
Environmental Systems Research Institute, Inc., Redlands, CA.

Folk, R. L. 1974. Petrology of Sedimentary Rocks. Hemphill Publishing
Co., Austin, TX.

Fonseca, L., Brown, C., Calder, B., Mayer, L., and Rzhanov, Y. 2009.
Angular range analysis of acoustic themes from Stanton Banks
Ireland: a link between visual interpretation and multibeam echo-
sounder angular signatures. Applied Acoustics, 70: 1298–1304.

Fonseca, L., and Mayer, L. 2007. Remote estimation of surficial
seafloor properties through the application angular range analysis
to multibeam sonar data. Marine Geophysical Research, 28:
119–126.

Goldfinger, C., Romsos, C., Chaytor, J., Yoklavich, M., Amend, M.,
Watters, D., Wakefield, W. W., et al. 2007. Multibeam sonar
surveys and geological habitat mapping of the seafloor within
the Cowcod Conservation Areas (CCA), southern California
continental borderland. Cooperative Research Report, Oregon
State University and National Oceanic and Atmospheric
Administration, ATSML Report 07-01: 40.

Hamilton, L. 2011. Acoustic seabed segmentation for echosounders
through direct statistical clustering of seabed echoes. Continental
Shelf Research, 31: 2000–2011.

Hamilton, L. J. 2014. Real-time echosounder based acoustic seabed seg-
mentation with two first echo parameters. Methods in
Oceanography, 11: 13–28.

Haris, K., Chakraborty, B., De, C., Prabhudesai, R. G., and Fernandes,
W. 2011. Model-based seafloor characterization employing multi-
beam angular backscatter data—a comparative study with dual-
frequency single beam. Journal of the Acoustical Society of
America, 130: 3623–3632.

Heald, G. J., and Pace, N. G. 1996. An analysis of 1st and 2nd backscatter
for seabed classification. In Proceedings of III European Conference
on Underwater Acoustics, pp. 649–654. Crete.

Ierodiaconou, D., Monk, J., Rattray, A., Laurenson, L., and Versace, V. L.
2011. Comparison of automated classification techniques for pre-
dicting benthic biological communities using hydroacoustics and
video observations. Continental Shelf Research, 31: S28–S38.

Jackson, D. R., Odom, R. I., Boyd, M. L., and Ivakin, A. N. 2010. A geoa-
coustic bottom interaction model (GABIM). IEEE Journal of
Oceanic Engineering, 35: 603–617.

Jia, Y., and Courtney, R. C. 2001. Broad-band frequency and
incident-angle dependence of bottom backscattering on Browns
bank. IEEE Journal of Oceanic Engineering, 26: 373–382.

Juan-Jorda, M. J., Barth, J. A., Clarke, M. E., and Wakefield, W. W. 2009.
Groundfish species associations with distinct oceanographic habi-
tats in the Northern California Current. Fisheries Oceanography,
18: 1–19.

Kloser, R. J., Penrose, J. D., and Butler, A. J. 2010. Multi-beam backscat-
ter measurements used to infer seabed habitats. Continental Shelf
Research, 30: 1772–1782.

Kostylev, V. E., Todd, B. J., Fader, G. B. J., Courtney, R. C., Cameron, G.
D. M., and Pickrill, R. A. 2001. Benthic habitat mapping on the
Scotian Shelf based on multibeam bathymetry, surficial geology
and sea floor photographs. Marine Ecology Progress Series, 219:
121–137.

Krigsman, L. M., Yoklavich, M. M., Dick, E. J., and Cochrane, G. R. 2012.
Models and maps: predicting the distribution of corals and
other benthic macro-invertebrates in shelf habitats. Ecosphere, 3:
1–16.

Lamarche, G., Lurton, X., Verdier, A. L., and Augustin, J. M. 2011.
Quantitative characterisation of seafloor substrate and bedforms

using advanced processing of multibeam backscatter—application
to Cook Strait, New Zealand. Continental Shelf Research, 31:
S93–S109.

Love, M., Yoklavich, M., and Schroeder, D. 2009. Demersal fish assem-
blages in the Southern California Bight based on visual surveys in
deep water. Environmental Biology of Fishes, 84: 55–68.

Madricardo, F., Tegowski, J., and Donnici, S. 2012. Automated
detection of sedimentary features using wavelet analysis and
neural networks on single beam echosounder data: a case study
from the Venice Lagoon, Italy. Continental Shelf Research, 43:
43 –54.

Nasby-Lucas, N. M., Embley, B. W., Hixon, M. A., Merle, S. G., Tissot,
B. N., and Wright, D. J. 2002. Integration of submersible transect
data and high-resolution multibeam sonar imagery for a habitat-
based groundfish assessment of Heceta Bank, Oregon. Fishery
Bulletin, 100: 739–751.

Pace, N. G., and Ceen, R. V. 1982. Seabed classification using the back-
scattering of normally incident broadband acoustic pulses.
Hydrographic Journal, 26: 9–16.

Pohjalainen, J., Rasanen, O., and Kadioglu, S. 2015. Feature selection
methods and their combinations in high-dimensional classification
of speaker likability, intelligibility and personality traits. Computer
Speech and Language, 29: 145–171.

Pudil, P., Novovicova, J., and Kittler, J. 1994. Floating search
methods in feature selection. Pattern Recognition Letters, 15:
1119–1125.

Rattray, A., Ierodiaconou, D., Monk, J., Laurenson, L. J. B., and
Kennedy, P. 2014. Quantification of spatial and thematic uncertainty
in the application of underwater video for benthic habitat mapping.
Marine Geodesy, 37: 315–336.

Rooper, C. N., and Zimmermann, M. 2007. A bottom-up method-
ology for integrating underwater video and acoustic mapping
for seafloor substrate classification. Continental Shelf Research,
27: 947 –957.

Stein, D. L., Tissot, B. N., Hixon, M. A., and Barss, W. 1992. Fish-habitat
associations on a deep reef at the edge of the Oregon continental
shelf. Fishery Bulletin, 90: 540–551.

Sternlicht, D. D., and de Moustier, C. P. 2003. Remote sensing of
sediment characteristics by optimized echo-envelope matching.
Journal of the Acoustical Society of America, 114: 2727 – 2743.

Thompson, A. R., Petty, J. T., and Grossman, G. D. 2001. Multi-scale
effects of resource patchiness on foraging behaviour and habitat
use by longnose dace Rhinichthys cataractae. Freshwater Biology,
46: 145–160.

Todd, B. J., and Kostylev, V. E. 2011. Surficial geology and benthic
habitat of the German Bank seabed, Scotian Shelf, Canada.
Continental Shelf Research, 31: S54–S68.

Tsehmahman, A. S., Collins, W. T., and Prager, B. T. 1997. Acoustic
seabed classification and correlation analysis of sediment properties
by QTC view. In Proceedings of IEEE OCEANS ‘97, pp. 921–926.
Halifax, Nova Scotia.

van Walree, P. A., Ainslie, M. A., and Simons, D. G. 2006. Mean grain size
mapping with single-beam echo sounders. Journal of the Acoustical
Society of America, 120: 2555.

van Walree, P. A., Tegowski, J., Laban, C., and Simons, D. G. 2005.
Acoustic seafloor discrimination with echo shape parameters: a
comparison with the ground truth. Continental Shelf Research, 25:
2273–2293.

Wentworth, C. K. 1922. A scale of grade and class terms for clastic sedi-
ments. Journal of Geology, 30: 377–392.

Whitmire, C. E., Embley, R. W., Wakefield, W. W., Merle, S. G., and
Tissot, B. N. 2007. A quantitative approach for using multibeam
sonar data to map benthic habitats. In Mapping the Seafloor for
Habitat Characterization: Geological Association of Canada,
Special Paper 47, pp. 111–126. Ed. by B. J. Todd, and H. G.
Greene. Geological Association of Canada, St. Johns,
Newfoundland.

Remote sensing of habitat characteristics 1973

 at U
niversity of C

alifornia, Santa C
ruz on D

ecem
ber 16, 2016

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/


Yoklavich, M. M., Greene, H. G., Cailliet, G. M., Sullivan, D. E., Lea,
R. N., and Love, M. S. 2000. Habitat associations of deep-water rock-
fishes in a submarine canyon: an example of a natural refuge. Fishery
Bulletin, 98: 625–641.

Young, M. A., Iampietro, P. J., Kvitek, R. G., and Garza, C. D.
2010. Multivariate bathymetry-derived generalized linear

model accurately predicts rockfish distribution on Cordell
Bank, California, USA. Marine Ecology Progress Series, 415:
247 –261.

Zimmermann, M., and Rooper, C. N. 2008. Comparison of echogram
measurements against data expectations and assumptions for distin-
guishing seafloor substrates. Fishery Bulletin, 106: 293–304.

Handling editor: Howard Browman

G. R. Cutter et al.1974

 at U
niversity of C

alifornia, Santa C
ruz on D

ecem
ber 16, 2016

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


