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Abstract

Using known-age Antarctic krill (Euphausia superba) grown from eggs hatched at two differ-

ent laboratories, we validate the annual pattern of bands deposited in the eyestalks of krill

and determine the absolute age of these animals. Ages two through five years were vali-

dated, and these animals ranged from 37.1 to 62.6 mm in total length. The band counts in

these individuals were either identical to their absolute ages, or only failed to agree by a few

months, which demonstrates the accuracy of this method. Precision and bias were esti-

mated graphically using Chang’s index (Coefficient of Variation = 5.03%). High accuracy

and precision between readers and low ageing bias indicate that longitudinal sections of

eyestalks can be used to age krill in wild samples and to develop age-based stock assess-

ment models for krill. Archival samples preserved in formalin (5%) and stored in ambient

conditions were also readable. Ageing preserved krill will provide the opportunity to examine

changes in growth among krill populations within the Southern Ocean and to retrospectively

examine changes in krill production over the last century to better understand the historical

and future impacts of climate change on this critical Southern Ocean species.

Introduction

Euphausiids are a critical link in the pelagic food webs of many marine ecosystems [1]. Several

species dominate the pelagic communities in oceans world-wide, and their life-history plasticity

is an important aspect of their success [2]. Euphausiids are a main component in structuring

the energy flow through marine ecosystems, and these species respond to environmental vari-

ability through their growth rates, fecundities, and dietary flexibility. In the Southern Ocean,

Antarctic krill (Euphausia superba; hereafter “krill”) is a key ecological species south of the Ant-

arctic Polar Front [3]. It has an estimated biomass in excess of 2 x 108 t [4, 5], with one-quarter

of this biomass concentrated in just 10% of its total habitat area, specifically the Bellingshausen
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and Scotia Seas. Additionally, this region supports a high biomass of predators, including fishes,

seabirds, and marine mammals that consume approximately 48 million tonnes of krill annually

[6]. Krill are also the basis of a significant and growing commercial fishery [7] that is currently

under-exploited, but with future development could equal 7% of current global marine capture

fisheries production [8].

The krill fishery in the Southern Ocean is managed by the Commission for the Conserva-

tion of Antarctic Marine Living Resources (CCAMLR). CCAMLR is developing a spatially-

structured management approach to limit the impacts of fishing on the krill stock and krill-

dependent predators [9], and will rely on biomass surveys of krill populations using both

echo-sounders and net tows to estimate the size of these populations [10]. The results of these

surveys will then be used to set catch limits for the fishery [11]. At present, however, age-based

stock assessment models are unavailable and CCAMLR uses data from length-frequency dis-

tributions to infer growth rate and length-at-age for input into the General Yield Model that is

used to determine the theoretical catch limit. Unfortunately, these length-based methods are

inherently imprecise due to the plasticity of krill life history (e.g., [12]).

For euphausiids, an additional difficulty with length-based assessment methods is that ani-

mals can ‘shrink’, either through changes in size during the regular molt, during periods of sea-

sonal dormancy or food limitation, or during periods of intensive reproduction (e.g., [13, 14,

15, 16, 17, 18]). Thus, it has remained difficult to compare spatial and temporal variability in

growth rates using length-frequency distributions because it is not possible to separate fast-

growing young krill from slow-growing old krill. This limitation has meant that despite more

than 50 years of research, it has not been possible to accurately assess the age structure of krill

populations or to estimate their natural longevity [19, 20]. This limitation has also hampered

comparisons of length-at-age among areas of the Southern Ocean with different environmen-

tal conditions [21, 22]. Given the magnitude of the climate-driven changes in the Southern

Ocean, and the regional differences in such changes (e.g., with faster loss of sea ice in the Ant-

arctic Peninsula region) determining the variability in growth among areas or over time is crit-

ical to understanding the response of krill to future climate change [23, 20, 24].

Unlike fishes and invertebrates that record their age and growth in annuli deposited and

preserved in calcified structures like otoliths, scales, and shells, krill do not have hard parts that

are preserved during ecdysis [25]. Also, unlike birds and mammals that can be tagged at their

breeding areas, krill are too small and numerous to use tagging data to estimate growth, mor-

tality, and age. The lack of hard parts has resulted in considerable effort to develop indirect

methods to determine age and growth in order to augment or replace length-based estimates

of age. Among the methods used to estimate age in crustaceans has been the measurement of

accumulated auto-fluorescing lipofuscin pigments in the brain or eyestalk neural tissue. This

metabolic by-product provides an index of physiological (i.e., metabolic-dependent) age [26,

27, 28, 29]. With this method, cohorts are identified by modal analysis of lipofuscin concentra-

tions in population samples, or individual ages are ascribed based on lipofuscin accumulation

in tagged or laboratory animals. However, the rate at which lipofuscin is accumulated can be

dependent on temperature, diet, and other factors [30], complicating the determination of age.

Other indirect measures of krill age and growth have been developed using structures that are

not resorbed during ecdysis. These include the number of cones in the compound eye and the

size of the eyeball [31, 32]. These studies showed that these structures can be used to examine

the response of krill growth to recent environmental conditions. However, like the biochemi-

cal methods described above, environmental influences (food and temperature) impact krill

growth and therefore the number of cones and the size of the eyeball. These techniques do not

necessarily provide a more robust estimate of krill age compared to length-based methods

[20].

Krill age validation

PLOS ONE | DOI:10.1371/journal.pone.0171773 February 22, 2017 2 / 14

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors declare no

competing interests. Support from the PNPA to TM

does not alter our adherence to PLOS ONE policies

on sharing data and materials.



Recently, Kilada et al. [33] showed that annual growth bands are formed in the eyestalk of

different shrimp species. The authors corroborated the annual formation of these marks using

other methods, including marking and tagging [25], and concluded that these growth bands

indicate absolute age. Since this original work, further studies on a number species have been

conducted [33, 34, 35, 36, 37]. In krill, Reiss et al. [38] first documented growth bands in thin

sections of the eyestalk. Krafft et al. [39] further examined the potential use of longitudinal sec-

tions of eyestalk in relation to sex and length in krill, but did not validate the method.

Here, we validate for the first time, the direct determination of absolute age in krill using

bands visible in thin section of eyestalks of known-age krill collected opportunistically from two

different laboratory facilities: the Australian Antarctic Division (AAD) and the Port of Nagoya

Public Aquarium (PNPA). We also show that age bands are visible in historical formalin-pre-

served samples collected from the wild. The implications of our research are substantial because

our results demonstrate that direct comparisons of length-at-age can be made between krill col-

lected in different areas of the Southern Ocean and that age-based assessment models can be

developed for krill. Additionally, because we show that archival samples can be aged, retrospec-

tive studies of krill growth between and among areas over time are possible, allowing for the

assessment of how climate and ecosystem change affect krill populations in the Southern Ocean.

Methods and materials

Known-age samples

Krill of known age were grown from eggs at the Australian Antarctic Division (AAD) in Aus-

tralia [40] and the Port of Nagoya Public Aquarium (PNPA) in Japan [41, 42], the only two

institutions that are presently capable of reproducing krill in captivity. At both institutions,

large groups of krill (200–2000 individuals) were kept in large holding tanks controlled at

either 0.5˚C (AAD) or 1.0˚C (PNPA) and fertilized naturally. Gravid females bearing sper-

matophores were individually separated into spawning jars to harvest embryos, which were

raised to adulthood in known-age groups in larger tanks. Details of the facility setups and gen-

eral feeding regimes are described in Kawaguchi et al. [40] for AAD and in Hirano and Mat-

suda [41, 42] for PNPA. The experimental setup of the seasonal light regimes differed between

the two facilities. At the AAD, a sinusoidal annual cycle with monthly variations in the photo-

period and daily variation in light intensity was used. The light regime approximated the same

cycle that is found at 66˚S and 30 m depth. Specifically, this regime used a maximum light

intensity of 100 lux at the surface of the tank (approximating the 1% light level at 30 m) during

summer (December) at midday, and declined until animals were kept in complete darkness

throughout the day during mid-winter (June). At the PNPA, the light intensity of the aquaria

was held constant at 120 lux throughout the year, and only light period varied. Light period

was set for 18 hours in December, and was reduced stepwise by two hours every month (i.e.,

16 hours in January and November, 14 hours in February and October, 12 hours in March and

September, 10 hours in April and August, 8 hours in May and July, and 6 hours in June).

Krill from AAD were preserved fresh in an ethanol, water, glycerol (70:26:4 by volume) pre-

servative, whereas krill from PNPA were preserved in formalin when dead individuals were

found in the tank during daily inspections. Therefore, at PNPA, krill were preserved up to 24

hours after death.

Field collections

Krill age was determined from individuals collected from two sample sets: summer (January

and February of 1992–2005) and winter (August 2015). The former set was collected during

annual U.S. Antarctic Marine Living Resources (AMLR) Program krill surveys around the

Krill age validation
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South Shetland Islands using a 2.54 m2 mouth area plankton trawl [43]. All samples were col-

lected in accordance with CCAMLR Conservation Measure 24–01. This study did not sample

endangered or protected species. Krill were preserved immediately after capture in buffered for-

malin (5%) and stored in 1 liter glass jars at ambient temperatures until 2009, when samples

were moved to a climate-controlled indoor facility. For this study, a total of 87 krill were ran-

domly sampled from the summer samples. However, of these 87 animals, 37 were damaged dur-

ing the initial preparation for ageing, leaving 50 individuals for embedding and sectioning. Of

the 50 useable animals, 25 were used for training technicians on the technique to embed and

section the eye stalk (see below), and we attempted to estimate ages from the remaining 25.

Krill were also collected in the austral winter of 2015 from around the South Shetland

Islands using the same gear and in the same general areas as the archival samples. A total of 73

individuals were randomly selected from stations and immediately preserved in the glycerol

preservative. Krill were placed individually in cuvettes, and then stored indoors at 20˚C. Eigh-

teen of these samples were used for training, and of the remaining samples, 40 were readable

after sectioning.

Sample processing

Eyestalks were obtained by dissecting preserved krill (Fig 1A), removing the compound eye

and all tissues filling the eyestalk (Fig 1B). After leaving the clean structure for 2–3 minutes

Fig 1. Eyestalk of Antarctic krill. (A) Eyestalk pair before cleaning; (B) cleaned left eyestalk, with yellow

arrows indicating the cutting axis; and (c) thin section of the whole eyestalk showing the growing edge or the

epicuticle (green arrow), the endocuticle (white arrow), and the location that shows clear growth bands (red

circle). Scale bar indicates 200 μm.

doi:10.1371/journal.pone.0171773.g001

Krill age validation
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until dry, the structures were embedded flat in Cold Cure epoxy resin on the bottom of silicone

wells. The embedded structure was left for 48 hours until the epoxy resin hardened. The resin

block was cut along a longitudinal axis (Fig 1B) to prepare serial longitudinal sections (160–

180 μm thickness) with a diamond-bladed Isomet saw (see S1 Fig for schematic). The product

of this step is a funnel-shaped section where the outer layer is the exocuticle as shown in Fig

1C and Fig 2. Sections were polished by hand using dry 0.3 μm grit lapping film, and viewed

with transmitted light under 90% ethyl alcohol with a CX41 Olympus compound microscope

under 4 to 10 x magnification. Digital images were taken with a DP72 Olympus video camera

attached to the microscope, and images were digitally enhanced, if necessary, using Adobe

Photoshop 12.0.4 to increase the contrast between adjacent bands. Growth bands can be recog-

nized as paired light and dark zones in the endocuticle. Annuli were counted from the basal

(adjacent to the membranous layer and hypodermis) to the distal region of the endocuticle

without knowledge of the animals’ actual age or length.

As noted above, not all krill selected and mounted in epoxy were useable. In some cases,

krill preserved in formalin were brittle and fractured when cleaned or sectioned. In other

cases, sections were not useable because of the angle of the cuts. We did not quantify the rea-

sons for exclusion of each sample, but note that with experience the proportion of samples that

were useable increased.

Precision assessment

To examine precision, band counts from a random selection of mounted eyestalk samples

from winter and summer collections (above) were made independently by two readers for

Fig 2. Thin sections of known-age Antarctic krill eyestalks. Transverse thin sections (170 μm) in the

eyestalk of known-age individuals of Antarctic krill showing the annual growth bands indicated by dots. Dots

are colored green in Figure D for contrast. Green and white arrows indicate the epicuticle and endocuticle

layers, respectively. Scale bars indicate 20 μm. A: 37.8 mm total length (TL) and 1 year (y) 4 month (m) old; B:

41.1 mm TL and 3 y 5 m old; C: 43.7 mm TL and 3 y 5 m old; D: 52.2 mm TL and 4 y old.

doi:10.1371/journal.pone.0171773.g002
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each specimen without prior knowledge of the krill length or of previous counts. Age-determi-

nation bias between readers was assessed through the use of an age-bias plot (S1 File). This

type of graph displays band counts of one reader against a second reader in reference to an

equivalence line where Reader 1 has the same results as Reader 2. Specifically, for all animals

assigned a given age by Reader 1, the mean age and 95% confidence intervals of the ages

assigned by Reader 2 are plotted against the age determined by Reader 1 (25). Precision esti-

mates were calculated by using the coefficient of variation (CV) as described by Chang (44) as

follows:

CVj ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
i¼1
ðXij � �xÞ2

q

�xj

where Xij is the ith age estimate of the jth krill, �x is the mean age of the jth krill, and R is the num-

ber of times each krill is aged. The CV is averaged across krill samples of a given age to produce

a mean CV.

Results and discussion

Age-validation and reader bias

Of the 19 original known-age krill in this study, 11 were successfully aged (six from AAD and

five from PNPA). Krill from AAD ranged from 37.2 to 42.1 mm and were between 1.4 and

four years of age. Krill from PNPA ranged from 36.2 to 62.6 mm and were between three and

five years of age (Table 1). Differences between band counts and actual ages were always within

a few months of, or identical to, the known age. For example, two bands were present on a

37.8 mm krill that was 1.4 years old (Fig 2A). In this case the second band was not fully depos-

ited, yet it was visibly wide enough to consider it as the second band. In a 52.2 mm krill that

was four years old, four bands were counted. This difference is explained by our inability to

estimate ages to the day or month. These results indicate that band counts are annual marks

and can be used as an absolute age indicator.

Twenty-nine krill were successfully aged from formalin- and glycerol-preserved wild krill.

Although they were more difficult to dissect and process, formalin-preserved samples were

readable, and growth bands were visible in thin sections (Fig 3A–3D). Band counts from for-

malin samples ranged from one to four over a length range of 25 to 48 mm. Samples preserved

Table 1. Information on known-age krill used in age validation. AAD–Australian Antarctic Division; PNPA–Port of Nagoya Public Aquarium. Estimated

absolute age in years (y) and months (m). Plusses (+) and minuses (-) represent the relative difference in the age given the hatch year, and the date of death

assuming a January 1 birthdate.

ID TL (mm) Hatching Date Sampling Date Absolute Age (years, months) Bands counted

AAD #1 43.7 Sept. 2011 Feb. 2015 3y, 5 m 3

AAD #2 41.1 Sept. 2011 Feb. 2015 3y, 5 m 3

AAD #1003 52.2 2011 Sept. 2015 4y 4

AAD#7 37.8 Oct. 2013 Feb. 2015 1y, 4 m 2

AAD#8 42.8 Oct. 2013 Feb. 2015 1y, 4 m 2

PNPA #1 43.0 2006–07 March 26, 2010 4+ y 4

PNPA #2 36.2 2006–07 March 26, 2010 4+ y 4

PNPA #5 62.6 2006 Dec. 5, 2011 5y 5

PNPA #6 52.0 2012 Nov. 25, 2015 3y 3

PNPA #7 55.4 2011 Sept. 11, 2015 4- y 4

PNPA #8 52.2 2011 Sept. 14, 2015 4- y 4

doi:10.1371/journal.pone.0171773.t001

Krill age validation
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in the glycerol preservative were easier to prepare (more pliable and less fragile), and bands

were clearly visible in these samples. Band counts of these samples also ranged from one to five

over a length range of 23 to 51 mm (Fig 4).

Reader bias of ageing unknown-age krill from the formalin- and glycerol-preserved samples

was assessed by comparing band counts from 20 randomly-picked prepared samples. Band

counts were consistent between two independent readers (Fig 5). The precision of the readers

was high, with a coefficient of variation (CV) of 5.2%.

Thin sections of the eyestalks of krill revealed distinct bands within the endocuticle that

were consistent in number with known ages of animals hatched and raised to adulthood in

captivity. As with other crustacean Families [33], all three layers of the cuticle–the epicuticle,

Fig 3. Thin sections of Antarctic krill eyestalks collected from the wild. Transverse thin sections

(170 μm) in the eyestalk of individuals of Antarctic krill collected from the wild in summer 1992. (A: 33 mm TL;

B: 47 mm TL; C: 46 mm TL; D: 48 mm TL) and samples collected in 2015 (E: 29 mm TL; F: 45 mm TL). The

images show the annual growth bands indicated by dots. Green and white arrows indicate the epicuticle and

endocuticle layers, respectively. Scale bars indicate 20 μm.

doi:10.1371/journal.pone.0171773.g003

Krill age validation
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exocuticle, and endocuticle, as ordered from the external surface—were visible in thin sections

of the eyestalks of individual krill.

The bipartite growth bands in all eyestalk sections consisted of a broad translucent zone

bordered by a narrower dark band (Fig 2). These bands were wider than the laminae that were

occasionally observed within areas of the endocuticle. Although cuticle material is shed during

ecdysis, it is apparent from chemical marking that some mineralized features of the cuticle are

retained post-ecdysis. Kilada et al. [33] demonstrated that chemical marks were retained in the

eyestalk of the American lobster (Homarus americanus) after three moults. Further, Leland

et al. [45] validated the annual deposition of growth bands on the gastric mill ossicles of the

Fig 4. Scatterplot of variability in lengths at age for Antarctic krill. Krill lengths varied widely with age,

beginning at age two. Formalin preserved summer samples are represented by the black symbols while

winter samples preserved in glycerol are represented by the grey symbols.

doi:10.1371/journal.pone.0171773.g004

Fig 5. Bias plot of Antarctic krill band count readings. Age bias graph for Antarctic krill aged by Readers

1 and 2 that counted the growth bands in thin sections of eyestalk. Each error bar represents the 95%

confidence interval about the mean age assigned by Reader 2 to all krill individuals assigned a given age by

Reader 1. The values indicate the number of individuals aged at each age group. The solid line represents 1:1

equivalence.

doi:10.1371/journal.pone.0171773.g005

Krill age validation
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freshwater crayfish (redclaw, Cherax quadricarinatus) using chemical tagging. Kilada et al. [33]

suggested that mineralized features of certain parts of the cuticle are retained, and retention of

this material may explain how crustaceans retain growth bands over time. The seasonal cycle

in light used in the experiments may have provided a sufficient zeitgeber to generate the

annual banding observed in animals from both the AAD and PNPA. While further research is

required to clarify the physiological mechanism by which euphausiids deposit and retain the

bands and some questions remain [46, 47], the banding pattern observed in krill is consistent

with the broader pattern that seems robust across decapod crustaceans.

The use of two different sources of known-age animals for age validation is an important

factor that gives us confidence that the bands are annual and are direct measures of age. Krill

moult with a frequency that is strongly dependent on water temperature and do not have a

terminal moult [48]. Given the different environmental conditions at the AAD and PNPA

aquaria, moulting frequency would be expected to differ. Had moulting frequency significantly

affected the deposition of band material in the endocuticle, consistent annual band counts

between animals from different aquaria would not be expected. The consistent counts across

laboratories support the hypothesis that band deposition is independent of moulting fre-

quency, and that bands are deposited once per year.

Krill are spawned between November and February in many areas of the Antarctic, and are

therefore one year of age the following January (when surveys are often conducted during the

austral summer). This fixes the “birth date” to January. For winter samples, 1-year-old krill are

8 months older, but because krill can shrink through ecdysis during winter [15, 48], complica-

tions in interpreting the annular bands may arise. In this study, we examined 1-year-old krill

that were collected in summer (January to March) and winter (August) and therefore differed

in age by 8 months. Because we are uncertain when the first annular mark is deposited, signifi-

cant ageing errors could arise when comparing lengths at age of the youngest krill.

Despite the differences in age for winter and summer samples, when combined, the esti-

mate of reader bias was relatively low and consistent with other studies [39]. It was also consis-

tent with established estimates for most fishes (5%–12%; [2]) and bivalves (5%–7%; [49]). The

CV was also similar to other shrimp species, including northern shrimp (Pandalus borealis)
(8%; [33]) and Chilean Nylon shrimp (Heterocarpus reedi) (7.2%; [34]). The low bias and low

CV in this study suggests that proper training of readers, coupled with cross-training and use

of reference samples, should enable high-quality age estimates for krill.

Proper determination of lengths-at-age and estimation of growth rates sufficient for spatio-

temporal comparisons will require further research to ensure that biases will not influence esti-

mates [e.g., 50]. Recent work on the modeling of age and growth has reiterated the possible

ways that biases can enter into the estimation procedure and highlighted that these biases can

be substantial. Spatial differences in growth, population mixing, incomplete sampling of the

age structure, and oversampling for older animals need to be carefully assessed. Accounting

for these sources of bias, a priori, and modeling length-at-age using modern techniques offer

the best opportunity to develop robust comparisons of length-at-age among years from pre-

served samples collected with different sampling gears.

A number of studies are needed to continue the development of age validation of the longi-

tudinal sections of eyestalks for age determination in krill and other euphausiids. Repeating

this opportunistic experiment with larger numbers of krill would be beneficial, but will take a

number of years. Additionally, it would be useful to examine the relationship between band

counts and other measures of size that have been proposed as proxies for age, like eyeball size

or the length of the cephalothorax. Comparisons of such easily measured biometrics with

length-at-age will provide a test to determine whether these metrics are reliable proxies of size-

at-age as proposed.

Krill age validation
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Development of more robust and consistent methods to embed and section the eyestalks

would be useful to increase the overall efficiency of the process. We lost a fair number of sam-

ples during preparation, mounting, or sectioning and thus reduced the overall number of sam-

ples in our analysis by up to 50% in some cases in the initial phases of the study. This suggests

that sufficient practice in embedding and sectioning krill will be necessary to minimize sample

loss that could potentially bias ageing of samples if sample loss is greater in some samples (e.g.,

smaller krill) than others (larger krill). Unlike otoliths that have a distinctive primordium that

provides a fixed and known initial starting point from which to count or measure increment

widths, eyestalks do not have any fixed point to anchor measurements, making the sectioning

critical to examining growth and estimating age. Additionally, physiological studies to deter-

mine the mechanisms that result in the formation and timing of annual bands is critical to

understand whether growth rates can be inferred from the distance between annual bands, as

has been inferred by Krafft et al. [39]. Long-term, multi-year laboratory studies of marked ani-

mals could provide information on the timing and retention of annual marks. The development

and training of ageing technicians will require a community effort to exchange knowledge, but

will also require a large number of known-age animals for distribution to different groups. Lab-

oratories that can provide known-age animals to the community will be important in develop-

ing a competent and consistent ageing program within the Southern Ocean.

Conclusion

The lack of methods to directly estimate the age of krill has been a major factor hindering the

understanding of this species’ life history and has limited the development of predictive mod-

els for understanding the effects of climate change in the Southern Ocean on the biology of

this critical species [2]. Recent breakthroughs in krill husbandry allowed us to raise krill of

known age [48]. Using known-age krill from two different laboratories for reference, we have

demonstrated that band counts from longitudinal sections of eyestalks reflect their absolute

age. This is significant, as the use of known-age animals is considered the most rigorous age

validation method because the absolute age of the animal is known without error [25].

The results of this work open the possibility of developing age-based assessment models in

an increasingly important fishery. Development of age-based assessment methods would help

to provide advice regarding stock structure, catch limits, and spatial management options as

requested by CCAMLR [9]. Moreover, the Southern Ocean is undergoing major changes

owing to climate change that have considerable impacts on the ecosystem [51]. These impacts

include changes in sea ice [52], primary production [53], and ocean pH [54]. Because of the

importance of krill to the Southern Ocean ecosystem, there is considerable interest in predict-

ing the impacts of climate change on krill [23, 24, 55, 56]. Accurate predictions have been lim-

ited, in part because of the inability to quantitatively understand the plasticity of krill life

history. We have also shown that formalin preservation of at least 23 years does not apprecia-

bly affect the ability to read eyestalk bands in these animals. Archived collections of krill exist

for samples taken as far back as the 1920s, so the ability to age preserved krill provides the

opportunity to retrospectively examine length-at-age in archived samples. It also provides the

opportunity to compare length-at-age over time and across environments to examine changes

in the Southern Ocean ecosystem, and will allow more robust predictions about the response

of krill to the changes occurring in the Southern Ocean.

Supporting information

S1 Fig. Schematic diagram of the morphology of the eyestalk used for ageing. A schematic dia-

gram showing the eyestalk from the anterior end (A) and top view (B), where the compound eye
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is visible filling most of the eyestalk mass. After preparing a longitudinal section in the clean struc-

ture, (C) shows the structure of the thin section showing the three main cuticle layers as follows

starting from the outside: exocuticle (tan), endocuticle (red) and endocuticle (blue). All growth

bands were observed and counted in the endocuticle (black bands).

(TIF)

S1 File. Supporting data used in ageing known age and wild caught krill. This Microsoft

Excel file contains the ageing data from wild caught Antarctic krill collected between 1992 and

2005 and preserved in formalin (summer) and krill collected in August 2015 (winter) and pre-

served in the Ethanol: water: glycerol preservative (Field Data). Data from known age krill

used for age validation, and precision assessment of known age Antarctic krill are in Valida-

tion_data tab.

(ZIP)
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