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Summary 
The links between stream flow patterns and adult steelhead production are unclear for the 

Carmel River. Here we fit generalized additive regression models to fish data from the river to 
understand the influence of flow on the survival and mean length of steelhead parr at the end of 
their first spring and summer, using about three decades of data. We also developed a spawner 
regression model to predict adult returns from the parr data, and then analyzed a variety of water-
management scenarios relative to this baseline scenario. Scenarios included an unimpaired flow 
scenario, a dam-removal scenario, and two reservoir dredging scenarios. Among our key 
findings is that spring flow is the strongest driver of parr growth and median size at the end of 
summer, and parr growth in turn is a key driver of parr density via a self-thinning process. Both 
parr density and parr size at the end of summer were important predictors of adult spawner 
abundance two and three years later, when the parr would be expected to have reached spawning 
age. The main role played by summer flow appeared to be maintaining wetted area in the stream 
channel during the key bottleneck of the low-flow season, which gave greater space for the self-
thinning process to play out. This maintenance of wetted area appeared especially consequential 
in the lower Carmel valley (west of the Narrows), which functioned mainly as habitat for larger 
steelhead parr, including age-1 parr. These larger parr then played an outsized role in the 
production of adult steelhead.  

The unimpaired water scenario assumed the water table in the lower valley was high, 
resulting in greater wetted area and high numbers of large parr in this domain, which in turn 
generated large numbers of adult steelhead, especially in years with wet spring conditions. The 
unimpaired scenario also predicted lower flows in the rest of the mainstem during the summer, 
relative to the baseline. Dam removal scenarios assumed water conditions similar to unimpaired, 
except that the lower valley was routinely dewatered in the summer due to water withdrawals, 
similar to what has been occurring under the baseline scenario. Our analysis suggests that for a 
dam removal scenario, the gain in adult production from reconnecting the upper watershed was 
approximately equal and opposite to the loss of adult production due to lower summer flows 
without the dam. Reservoir-dredging scenarios produced modest gains in adult production, 
similar to the unimpaired scenario, but due mostly to maintenance of greater wetted area in the 
summer relative to the baseline. Maintenance of surface flow in the Lower Valley was at least as 
important as the effects of the dam on flows elsewhere. This assessment focused only on the 
immediate response of the population to surface flow, and did not examine the many other 
effects on habitat from the management of natural fluvial processes. 
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Figure 1. (a) Recent history of low-flow at the head and foot of Carmel Valley (Robles del Rio 
and Near Carmel gauges, respectively). (b) Spatial pattern of annual dryback in Carmel River 
downstream of Los Padres Reservoir, reconstructed for each year since 1990 from field notes from 
fish rescue operations.  

 
Introduction 
 For much of the 20th Century, the water of the Carmel River and its aquifer was viewed 
mainly as a commodity resource to be stored in two reservoirs. During the dry season, 
streamflow downstream of the lower reservoir at San Clemente was simply seepage through the 
dam (Snider 1983), which infiltrated completely into the aquifer of Carmel Valley and left the 
alluvial portion of the river mostly dry most of the year. In the wet season, surface flow allowed 
migratory steelhead trout to ascend the river and a fish ladder at San Clemente Dam, spawning in 
upstream habitat where the river maintained perennial surface flow. But dewatering of the lower 
river, impediments to both upstream and downstream fish passage at the two dams, and various 
other factors substantially limited productivity of the Carmel steelhead population in this period.  
 Starting in the late 1970s, releases of reservoir water were modified to keep surface flow 
mostly above zero at the head of Carmel Valley (Figure 1a, top). But at the lower end of the 
valley near the estuary, it mostly continued to decline to zero due to infiltration into the lowered 
water table of the aquifer (Figure 1a, bottom). An exception was the extremely wet winter of 
1981-82, which saturated the watershed enough to maintain a nontrivial surface flow in the lower 
river through the entire dry season. That year, Dettman and Kelley (1986) documented extensive 
rearing of juvenile steelhead throughout the river system, including large numbers in the usually 
dry channel of the lower river.  
 Ten years later, the river reached a turning point, when the management of its water was 
fundamentally changed to maintain more substantial surface flows at the head of the alluvial 
valley. Well operations were also changed to raise the water table and maintain surface flow 
upstream of the Narrows, a natural bedrock constriction that effectively separates the alluvial 
valley into two distinct groundwater basins. As a result, the annual dry-back of the river channel 
was confined mostly to the lower valley downstream of the Narrows (Figure 1b). Numerous 
other measures, such as restoration of riparian vegetation, fish rescues, captive rearing of wild 
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steelhead, gravel augmentation for spawning habitat, and eventually the complete removal of San 
Clemente Dam, were also pursued to promote steelhead recovery. 
 The Carmel River and its steelhead are now approaching a second turning point, with 
decisions pending on the fate of the remaining dam at Los Padres, as well as a future water-
management strategy to balance the needs of people and the river’s aquatic ecosystem. To 
provide scientific input on these decisions, we used data collected in the past 30 years to answer 
two related questions: First, how did steelhead production respond to the historical flow regime? 
Second, how strongly would alternative water-management scenarios for the river alter steelhead 
production if they had been implemented instead? 
 Because steelhead populations are affected by diverse environmental influences whose future 
unfolding is uncertain, we examine the water scenarios within the context of the recent past 
rather than the near future. This permits us to frame the response of the steelhead population to 
each water scenario in a quantitatively precise way, as a difference from its observed historical 
pattern of variation, which we call the “baseline scenario.” Analyzing alternative scenarios 
relative to the baseline allows us to ask our second question using the answer from our first 
question, while holding all other environmental effects constant. 
  
Methods 
Study system 
 Carmel River drains a mountainous, 660 km2 coastal watershed in California, where the 
nearby ocean generates a "Mediterranean" climate of warm wet winters and foggy, rainless 
summers. The surrounding coastal mountains generate a precipitation gradient, with high winter 
rainfall in the west and south (~1.7 m annually in some areas), and much more arid conditions in 
the north and east (~0.6 m annually). Adult steelhead, known as spawners, typically migrate up 
from the ocean to spawn January through April. Juvenile progeny, known as parr, typically 
remain in the river 1 year (sometimes 2 and occasionally 3), then transform into a saltwater-
tolerant form known as smolts and migrate down to the ocean in April or May (Arriaza et al. 
2017). After 1 or 2 years in the ocean (rarely 3 or 4) they return to the river to spawn. The 
freshwater-resident form of O. mykiss (rainbow trout) also occurs in this system and interbreeds 
with steelhead. The abundance of rainbow trout has not been formally measured, but 
observations suggest a relatively modest yet consistent presence. 
 Data for addressing our questions cover ~30 years, and come from a series of stream gauges 
(Figure 2) and annual population surveys of the steelhead (Arriaza et al. 2017). Population 
surveys include spawner counts from fish-passage infrastructure at two dams, and parr data 
collected at the end of the dry season in September and October. Parr data comprise fish 
densities (m-2), fork lengths (of sampled fish), and channel wetted widths, from depletion-
sampling at a series of sample reaches described in more detail below.  
 Although we focused on effects of stream flow, we must statistically control for effects of 
two related fish-conservation activities. To mitigate the impacts of lost surface flow, parr are 
routinely rescued from drying stream reaches each summer by the Monterey Peninsula Water 
Management District and the Carmel River Steelhead Association. These fish have two distinct 
fates. Some are taken to a steelhead rearing facility, held and fed until the wet season, and then 
released as downstream migrants. Others are immediately relocated to another part of the stream 
network that has maintained surface flow, and released. We call these groups captively-reared 
and rescued fish, respectively, and incorporate them into the analysis as appropriate. But they are 
not our focus here.  
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Figure 2. Carmel River and tributaries, with locations of stream gauges (black dots), midpoints of 
sample reaches in the finite sampling frame (colored dots), and associated process domains 
(colors). Stream segments without dots are either above impassable barriers or are lentic habitats 
(estuary, reservoir). Two-letter codes refer to mainstem stream gauges mentioned in the text. 

 
Analytic strategy 
 Our general strategy was to use a statistical parr model to predict how stream flow affected 
wetted area, parr density, and parr size at the end of the dry season; and then to use a statistical 
spawner model to predict adult abundance from the wetted area, density, and size. Once these 
models had been calibrated to the historical baseline, we constructed a variety of alternative flow 
scenarios and predicted their effect on adult production, relative to baseline and holding all other 
aspects of population dynamics constant. The latter aspects included the compounding effects of 
population growth across years, and so the predicted responses represent a “one-at-a-time” test, 
where the response in each year represents a scenario of altered flow in that year, but baseline 
flow patterns otherwise. Each year thus represents a statistically-controlled independent trial. 
 Our statistical approach used generalized additive models (GAMs) for their flexibility in 
characterizing the empirical relationships between predictors and responses (Wood 2017). The 
approach championed by Wood (2003, 2004; Wood et al. 2016; 2017) uses thin-plate regression 
splines penalized by smoothing parameters to flexibly estimate response curves (partial effects) 
that optimize out-of-sample prediction. Since our goal was prediction rather than inference, we 
also used AIC to sort among models with competing predictors (Tredennick et al. 2021). AIC 
(Akaike Information Criterion; Burnham and Anderson 2002) is designed to identify models that 
optimize out-of-sample prediction, and so is appropriate to predicting novel scenarios.  
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 All such analyses used the computer software package R (R Development Core Team 2021) 
and the add-on package mgcv (Wood 2017), in which we computed AIC from the maximum 
likelihood and the effective degrees of freedom (edf) returned by the function mgcv::logLik.gam. 
In general, we discuss AIC in terms of the evidence ratio (ER; Burnham and Anderson 2002), 
which derives from the difference of AIC between two models (∆AIC) but is more intuitive in our 
view. We interpret the ER of two models as the odds that one versus the other makes better out-
of-sample predictions. 
 For simplicity, we assumed the effects of flow to be predictable from an annual summary 
statistic. We considered eight statistics total: For each of two seasons, spring (Mar-May) and 
summer (Jul-Sep), we considered two alternative measures of central tendency (mean and 
median) and two measures of seasonal extremes (10th percentile and 90th percentile of daily 
flow). Central tendencies describe the overall stream conditions for each season, while extremes 
describe the stresses imposed by high or low flow. Because the eight metrics were correlated, we 
considered them to be mutually exclusive candidates for prediction and selected the best one 
using AIC. This avoids the well-known hazards of interpreting multiple regression on correlated 
predictors (McElreath 2020). 
 To capture habitat heterogeneity, we modeled effects of flow on fish within the context of 
process domains (Figure 2). Process domains are spatially identifiable areas characterized by 
distinct suites of fluvial processes (Montgomery 1999), and the numerous stream gauges allowed 
us to compute flow metrics local to each such domain. Following Montgomery (Montgomery 
and Buffington 1997; 1999), we divided the stream network into a headwater/tributary section; a 
middle canyon section; and an alluvial valley section, corresponding to reaches where channel 
morphology is dominated by sediment export, transport, and deposition, respectively. In 
addition, for the tributaries we distinguished between those that receive high rainfall (Upper 
Headwaters, Southern Tributaries in Figure 2) versus low rainfall (Eastern Tributaries).  
 Finally, we further distinguished process domains based on spatially distinct but pervasive 
human impacts. We separated the otherwise similar Southern Tributaries from the Upper 
Headwaters, because the latter is above Los Padres Reservoir, which blocks passage of 80% or 
more of outmigrating steelhead annually (Ohms et al. 2022), and also likely impacts upstream 
passage of adults during the trap-and-haul procedure. We also separated the Upper and Lower 
Valley (alluvial river channel upstream and downstream of the Narrows, respectively). The local 
water company has well fields for extracting groundwater throughout both the Upper and Lower 
Valley, but since 1992 it has pumped water each summer from the aquifer near the estuary at the 
west end of Lower Valley, with well operations gradually moving eastward each summer as 
necessary to maintain water supply. This practice generally maintained a high water table and 
mostly perennial surface flow in the Upper Valley, but a pattern of seasonal drying in the Lower 
Valley (Figure 1b). A small section of braided channel in the Upper Valley also tends to dry 
most summers (visible in Figure 1b), due to deposition of sediment at a local knickpoint in the 
channel gradient. 
 
The Parr Model 
 Parr data came from a set of index reaches and randomly-sampled reaches. Since 1991, the 
local water district sampled ~10 index sites annually, broadly distributed across Canyon, Upper 
Valley and Lower Valley, while the state sampled three index sites in Upper Headwaters about 
every five years. In 2015 we established a finite sampling frame across all process domains 
(Figure 2), and randomly sampled 10-20 additional reaches yearly using a rolling panel design 
(Adams et al. 2011; Boughton et al. 2022). In all cases, parr density (fish/m2) was estimated for 
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stream sections ~100m long using block nets, electrofishers, and the depletion method (Temple 
and Pearsons 2007; Reynolds and Kolz 2013), with abundance estimated as in Carle and Strub 
(1978; Ogle et al. 2021a; Ogle et al. 2021b). We found no significant differences in parr density 
between index and random reaches (Boughton et al. 2020) and here treat them as exchangeable. 
 For realism, we modeled parr as a multivariate response consisting of parr density, parr size, 
and the wetted width of the sample reach, with density log-transformed to stabilize variance. Parr 
density and size showed a clear negative correlation across sampling events (Figure 3), which is 
an expected result of competitive self-thinning processes in freshwater salmonids (Dunham and 
Vinyard 1997; Einum et al. 2006; Rosenfeld 2014; Myrvold and Kennedy 2015; Matte et al. 
2020). Self-thinning typically involves fish movement as well as mortality and can thus 
redistribute fish across the watershed, away from areas with large fish defending large territories 
(Grant and Kramer 1990). Fish density and size are thus mechanistically linked, along with 
wetted area which sets the total space for the competitive processes to play out (Grant et al. 
1998; Ayllon et al. 2012).  
 

 
Figure 3. Density and median size of parr, for sampling events on the mainstem downstream of 
Los Padres Reservoir. 

 
 Streamflow should affect self-thinning, but the most predictive flow metric is unclear since 
thinning arises from a variety of ecological mechanisms (Matte et al. 2020), and can also be 
amplified by asymmetric competition (Hughes 1998). The number of spawners should also affect 
parr production, and thus their density and size, and so should the number of rescued fish each 
summer, as well as myriad other impacts that would vary unpredictably among years and stream 
reaches. We treat the latter as random effects, so that the full parr model has the structure  
 

Eq. 1 ln(Density) = 
Mean for 
process 
domain 

+ 
random 
effect of 

year 
+ 

random 
effect of 

reach 
+ s(flow) + s(spawners) + s(rescues) 

              

Eq. 2 Fish Length = 
Mean for 
process 
domain 

+ 
random 
effect of 

year 
+ 

random 
effect of 

reach 
+ s(flow) + s(spawners) + s(rescues) 

              

Eq. 3 Wetted 
Width = 

Mean for 
process 
domain 

+ s(year) + 
random 
effect of 

reach 
+ s(flow)     

 
where “s(x)” represents a spline curve for predictor x, and random effects are normally 
distributed with mean zero (function mgcv::s with bs=“re”; see Wood 2017 §3.5.2).  
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 Exploratory analysis suggested two refinements. First, the effect of year on wetted width was 
modeled as a smooth curve rather than a random effect, to represent geomorphological change 
across years. Second, the effect of rescues (number of rescued fish released into a given domain 
in a given year) was modeled as the sum of a categorical effect and a spline curve. The 
categorical parameter was fit to an indicator (True/False) for whether a given domain received 
fish in a given year, while the spline curve modeled the quantitative response of density to the 
number of released fish, which varied greatly.  
 We added the categorical effect because we observed that density in a domain was 
systematically lower in years when they received rescues versus not; yet density also had an 
opposite, positive association with the (nonzero) number of released fish. We interpret these 
opposing patterns as stemming from inhibited parr movement in dry years—that the same 
conditions generating stranded fish also prevented fish from moving out of drying reaches into 
reaches with perennial flow but low occupancy. The categorical effect thus represents the 
negative impact of inhibited movement, while the spline curve represents the ability of rescues to 
mitigate it. 
 We represented parr length as the median fork length of fish caught in each sampling event. 
Histograms of these lengths typically had a dominant mode, interpreted as the most common age 
class in the sample, and often one or occasionally two smaller modes representing other age 
classes. We used median size rather than mean to better represent this dominant mode, so that 
Eq. 2 modeled the most common age class in each sample site. Ergo, any distinct dynamics of 
other age classes were implicitly absorbed into the random effects, and thus held constant among 
the various scenarios. The dominant mode usually represented age 0 fish, but occasionally age 1 
fish or even adult rainbow trout (cf Figure 3).  
 Finally, to predict the length of wetted channel in the Upper and Lower Valley, we used the 
dry map (Figure 1b) to fit a one-parameter model, 
 
Eq. 4 𝑝𝑝𝑤𝑤 = 1 − 𝑒𝑒−𝑘𝑘𝑘𝑘 
 
in which pw is the proportion of total channel length that maintained surface flow all summer, Q 
is the flow metric, and k is a single fitted parameter. Here, zero flow at the gauge corresponded 
to zero proportion of wetted channel, the steepness of response to Q is described by k, and the 
equation asymptotes at 1 for large Q. 
 Eq. 1 through Eq. 3 define a generalised additive mixed-effects model, where observations 
are individual reaches, but predictors are grouped by process domain and year, treated as fixed 
and random effects respectively. A mixed-effects model is well suited to our dataset with its 
unbalanced samples across years, because years with fewer data will automatically get "shrunk" 
toward the overall mean of each domain, rather than bias our estimates of the means and the 
splines (Gelman and Hill 2007). Our data is also unbalanced across domains, which we dealt 
with by selecting model structure using only the domains sampled every year—Canyon, Upper 
Valley and Lower Valley—which are also the ones that can vary among the scenarios. Once the 
final structure had been selected via AIC, we added back observations for Upper Headwaters and 
Southern Tributaries and refit the model. We omitted the arid Eastern Tributaries because nearly 
all randomly-sampled reaches had zero surface flow. The role of the lagoon is not modeled 
explicitly due to lack of data, and thus is subsumed into the annual random effects. 
 The parr model’s final structure was selected in three steps. First, we constructed univariate 
versions of Eq. 1 through Eq. 3 with each of the eight flow metrics, and used AIC to select the 
most predictive metric for each. Then, we removed any predictor if it improved AIC. Finally, we 
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created the multivariate normal model and used AIC to compare the four possible combinations 
of flow metrics previously selected for Eq. 1 and Eq. 2. We assume this identifies the best out-of-
sample predictors after accounting for correlation of fish density and size. 
 
The Spawner Model 
 Spawner counts came from a fish ladder at San Clemente Dam. These counts omit fish 
spawning downstream of the dam, but in our view are reliable indicators for relative abundance 
and average 57% of total run size (see Supplement §S1, §S2). The dam was removed in 2015 
and newer counts were inferred from correlated counts at Los Padres Dam (Supplement §S3). 
 The spawner model predicts adult returns from parr abundance and size at the end of the dry 
seasons two and three years prior. According to fish scales (Dettman and Kelley 1986), most 
returning adults spend one or two years in the ocean, or in other words, are survivors of this parr 
group from two and three years prior. The model used simple linear regression with the intercept 
fixed at zero, because we know that zero parr produce zero adults, and the slope of the regression 
is then interpretable as ocean survival.1 To maintain this interpretation when size was a second 
predictor, it was centered on zero (mean subtracted). Parr abundance and size for each year came 
from the parr model, predicted for all reaches in the sample frame and then aggregated (sum for 
abundance, abundance-weighted mean for size). For accuracy we included captively-reared parr 
in this calculation, and also removed 80% of the parr estimated for Upper Headwaters because a 
tagging study estimated that 80% of downstream migrants disappear into Los Padres reservoir, 
possibly due to predation (Ohms et al. 2022). 
 Parr abundance is an obvious predictor of spawner abundance, but the role of size is less 
clear. Usually, larger smolts tend to survive better in the ocean and thus increase spawner 
abundance (Ward et al. 1989; Bond et al. 2008), but this advantage can be erased by poor ocean 
conditions (Ward 2000), and in any case propensity to smolt is a complex function of parr size 
that declines for parr > 150 mm and also depends on sex, genotype, age class and other factors 
(Satterthwaite et al. 2009; Pearse et al. 2019). Our size predictor averages across all this 
heterogeneity so its predictive value is unclear. We considered three model structures for its role 
(Figure 4). In our view, model J × L is the most biologically realistic, but also has the most 
parameters and therefore the highest risk of overfitting.  
 We also considered models that split vs lumped the two years of parr. Splitting allows 
survival to depend on years spent in the ocean, while lumping benefits from fewer parameters.  
 

 
Figure 4. Schematic of prediction structures considered for the spawner model, where multiple 
lines indicate groups of parr with different mean-median lengths. 

                                                 
1 More accurately, apparent survival since it omits fish spawning downstream of San Clemente Dam.  
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Flow scenarios 
 Carmel River is an extremely well-gauged system, with daily streamflow gauges on all major 
tributaries and six gauges on the regulated mainstem (Figure 2). A seventh mainstem site 
immediately upstream of Los Padres Reservoir represents natural flow (LP in Figure 2). 
Unfortunately flow at this site was only measured monthly and not during the height of each wet 
season, except in 1995 and 1998. In these two exceptionally rainy years, flow was estimated 
daily during the wet season. 
 We used the gauge data to construct six flow scenarios (Table 1). The “baseline scenario” 
represents the actual historical situation of the past 30 years, while the other scenarios span a 
range of possibilities for the local water company to exercise its water right, from complete 
absence of any water extraction (the unimpaired scenario) to expansion of the existing water 
right by dredging more capacity in Los Padres Reservoir. In the baseline scenario, the water 
company routinely exceeded its legal water right of 3376 acre-feet per year to meet demands of 
people; scenario CDO/3376 assumes the limits of the water right were respected but otherwise 
matches the baseline. In all scenarios except unimpaired, the water right was exercised at well 
fields in the Lower Valley. Of course, numerous other water users in the watershed have their 
own wells and their impacts are implicitly held constant across scenarios.  
 
Table 1. Flow scenarios and methods for constructing them 

Scenarios Description1 

Baseline Historical pattern, water right 3376 routinely exceeded. 
Unimpaired No dams, no water extraction by water company. 
LP Dam Removal No dams, water right 3376 exercised. 
CDO/3376 Historical pattern, except water right 3376 not exceeded. 
LP Dredge/3906 Water right expanded by reservoir dredging. 
LP Dredge/4492 Water right expanded by reservoir dredging. 

Methods  
BHM Methods Output from Basin Hydrologic Model 

Daily BC Bias-correction applied to daily flow data. 
Seasonal BC Bias-correction applied to seasonal flow metrics. 

Empirical Methods Regression models predict downstream gages from upstream gages. 
High infiltration Lower Valley infiltration predicted from Lower Valley regression 
Low infiltration Lower Valley infiltration predicted from Upper Valley regression 

1 Numbers 3376 etc. are annual acre-feet of water extraction covered by the water right of the local water company. 
 
 Scenarios were constructed using a variety of methods, summarized in Table 1. BHM 
methods used outputs from a process-based “basin hydrologic model” that covered hydrologic 
processes for the entire Carmel watershed, including runoff, stream flow, groundwater, and 
evapotranspiration. Outputs were provided by the Monterey Peninsula Water Management 
District and their methods and assumptions are not reported here. Empirical methods used 
regression to predict flow at downstream gauges from flow at upstream gauges, except for the 
empirical baseline, which simply used the gauge data itself.  
 The empirical and BHM versions of the baseline scenario would ideally be the same, but in 
fact were quite different—especially in the Lower Valley where the BHM scenario greatly 
underestimated infiltration and channel drying in late summer. These differences mean the BHM 
outputs were biased, which we corrected using: 
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Eq. 5 Bias-Corrected  
Scenario X = Modeled 

Scenario X - 
Modeled 
Baseline 
Scenario 

+ 
Empirical 
Baseline 
Scenario 

 
Eq. 5 assumed that all bias in model outputs was captured by the difference between the two 
versions of the baseline scenario. The bias-corrected baseline is thus identical across methods, 
and each other scenario can be represented simply as a deviation from it. We compared two 
versions of bias-correction (BC). The daily BC applied Eq. 5 to daily flow before aggregation 
into the seasonal metrics used by the parr model, while the seasonal BC applied it after 
aggregation. An additional statistical correction was needed to account for infiltration in Lower 
Valley, due to an abundance of zeros in the empirical baseline. The correction assumed a fixed 
infiltration rate during the dry season, estimated from the difference between Upper Valley and 
Lower Valley flows (see Supplement §S4 for details). 
 

 
Figure 5. Upstream gauges as predictors of daily flow at stream gauges representing the Canyon 
domain (A), the Upper Valley domain (B), and the Lower Valley domain (C). Red dashed line 
references an idealized 1:1 relationship. Anomalies at the Sleepy Hollow gauge (marked as red in 
A) were assumed to be due to filling or discharge of San Clemente Reservoir, and were removed 
before fitting regressions. Downward curvature of the point cloud at low flows in (B) and 
especially (C) are assumed to be effects of infiltration into the aquifer under Carmel Valley. 

 
  For empirical scenarios, we constructed at-a-station GAMs to predict downstream gauges 
from summed flow at upstream gauges (Figure 5). These methods used AIC to consider 
additional predictors for loss or gain of surface flow: mean or maximum daily air temperature, 
day-of-year (DoY), year, and various two-way interactions. Air temperature2 can drive 
substantial evaporative losses from the stream, especially in the dry season. Day-of-year captures 
seasonal effects of unmeasured drivers such as soil moisture; and year captures the component of 
such drivers that spans multiple years, such as the deep depletion of soil moisture in an extended 
drought. This parsing of unmeasured environmental factors as implicit year and seasonal effects 
follows O'Donnell et al. (2014). 
 All at-a-station models had log-transformed flow to stabilize variance, and all except Lower 
Valley assumed a Gaussian location-scale model, which is like a normal model but also has a 
linear predictor for residual variance. We made upstream flow a predictor of the variance to 
                                                 
2 From PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, dataset AN81d, accessed 20 
Jan 2022. 
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capture the higher variance at lower flows that is visible in Figure 5. Lower Valley required a 
left-censored normal model (R package cenGAM::tobit1) to accommodate the numerous days of 
zero flow (Figure 5C). The censoring point was set at the smallest non-zero flow detectable by 
the gauge (0.00028 m3/s). The LP gauge above Los Padres Reservoir was crucial for scenarios of 
natural flow (unimpaired, dam-removal), but had only monthly data and no upstream gauges, so 
we filled in the gaps using a GAM with gauge data from a nearby river as a predictor. Of three 
candidates (nearby Carmel tributaries; Arroyo Seco River to the south east; Big Sur River to the 
south west), AIC indicated Big Sur River flow was by far the best predictor. 
 The empirical versions of the unimpaired and dam-removal scenarios simply replaced the 
flow pattern below Los Padres Reservoir with the pattern directly above it (gauges BL and LP in 
Figure 2). We then used at-a-station models to propagate the effects downstream to the Canyon, 
Upper Valley and Lower Valley (gauges SH, DJ and NC in Figure 2), adding in tributaries along 
the way. Likewise, the various dam-fix scenarios took BHM output for the Canyon, bias-
corrected its daily flows, and then propagated them downstream using the at-a-station 
regressions.  
 The empirical method has no straightforward way to represent infiltration in the Lower 
Valley under various water-extraction scenarios, and so we bracketed the range of likely 
response with a high-infiltration method and a low-infiltration method (Table 1). The former is 
same as baseline, where the legal water right was routinely exceeded by large margins, while the 
latter predicted flow at Lower Valley using upstream gauges plugged into the regression model 
for Upper Valley. In practice this meant that the curvature observable in the point cloud at lower 
left in Figure 5B replaced the sharper curvature observable in Figure 5C.  
 
Population response to flow scenarios 
 The streamflow metrics for the various scenarios were plugged into the parr model to predict 
total parr abundance and mean-median fork length for each year that had BHM outputs (1993 to 
2015). We then used parr abundance and length in the spawner model to predict adult returns per 
brood year of parr. To control for the effects of all the various other background influences on 
population dynamics, we summarized each scenario as its effect relative to the baseline scenario. 
 Uncertainty was propagated during this procedure via multiple imputation. We treated the 
estimated parameters from the parr model as posterior Bayesian probability distributions (see 
Wood 2017 §6.10 and §7.2.7). Uncertainty was propagated via 5000 simulated draws from the 
posterior, with each draw held constant across scenarios. Likewise, random effects and residual 
error for unsampled reaches were simulated 5000 times and held constant across scenarios. For 
each of these posterior draws, total parr abundance and size was calculated for each year of each 
scenario. Then, a new estimate of the spawner model was imputed using the parr abundance and 
size from the baseline scenario. This produced draws from an approximate posterior for the 
spawner model, which were then used to predict spawner abundance under the other scenarios. 
 
  



   
 

12 

Results 
 
Parr model 
 Spring low-flow (QP10) was the best predictor for parr length (i.e. had the lowest AIC value), 
and summer median flow (QP50) was the best predictor for parr density. The evidence ratio was 
10:1 over the next-best model, which had summer median flow for both fish length and density. 
In the best parr model, correlation of the error terms for parr size and density was -0.40, 
substantial enough to establish an important role for self-thinning.  
 

 
Figure 6. Partial effects of predictors for fish density (top) and size (bottom) in the parr model. Effects 
for fork length are directly interpretable as millimeters of size achieved (or lost), relative to the mean 
size in the Canyon domain (84 mm). Effects for density are on the scale of natural logarithms (1 unit 
≈ three-fold change), relative to mean density in the Canyon (~ 0.5 fish/m2). Shading is 67% 
confidence bands, and hashes on the x-axis plot the predictor data. 

 
 Figure 6 shows partial effects estimated by the parr model. In the first column, the effect of 
spawners on parr density (Figure 6A) showed a classic hump-shaped stock-recruit curve, peaking 
around 500 spawners. A likely competitive effect also showed up for parr length (Figure 6E), 
where the fork length achieved by parr drops sharply by ~15 mm as spawner abundance rises 
from single digits to ~300 adults; its drop then moderates somewhat but still loses another 5 mm.  
 The effect of spring flow on growth is quite striking (Figure 6F). Initially, as spring low-flow 
(QP10) rises from nearly zero to 1.5 m3/s, parr size improves by about ~12 mm but then levels 
off. But the occasional years substantially wetter than 3 m3/s produced huge effects, up to 50 mm 
of additional growth. For density, greater summer flow was associated with lower density, about 
a 2-fold decrease (Figure 6B). This seems counterintuitive if higher flow were associated with 
better survival, but is consistent with two alternative explanations, a strengthening self-thinning 
process and/or a dilution effect. For self-thinning, the combined patterns in panels B and F 
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suggest that wetter years produce faster growth, and the larger fish establish larger feeding 
territories (Grant and Kramer 1990), driving a lower density as smaller fish either emigrate or die 
(Hughes 1998). In the wettest years, the estuary stays connected to the mainstem, opening a 
food-abundant destination for emigrants in the summer when food is otherwise very limited 
(Bond et al. 2008; Kelson and Carlson 2019). However, experiments with adding a categorical 
variable for estuary connection in a given year (Yes/No) neither improved the model AIC, nor 
produced a stastically significant effect, so a specific role of estuary connection was not 
discernable in the data. 
 Panels C and G show mean density and size in the various process domains, relative to their 
means in the Canyon (0.54 fish/m2 and 83.8 mm FL). The only statistically significant 
differences from the Canyon were size in the Upper Headwaters (p = 0.0095), and both size and 
density in the Lower Valley (p < 0.0001 for each). Parr were about 14 mm smaller in the Upper 
Headwaters than in the Canyon, and about 10 mm smaller than in the Southern Tributaries, 
which have comparable rainfall and geomorphic processes. Fish in the Lower Valley were 
considerably larger and less dense than anywhere else, on average 31 mm larger and 1/3 as dense 
as in the Upper Valley just upstream. 
 Finally, Figure 6D shows the effect of rescued fish on density, where the sloped line implies 
that number of released fish was log-linearly associated with higher densities at end of summer. 
The intercept of this line shows the magnitude of the categorical parameter, interpreted as 
density if fish were stranding but not rescued. Both the categorical and spline predictors were 
highly significant (p < 0.0002), showing that fish relocations partially reversed the impacts of 
stranding.  

 

 
Figure 7. Partial effects for predictors of wetted width (A, B) and length (C) of stream habitat at 
the end of the dry season. In A and B, partial effects are directly interpretable as meters of width 
relative to the average in the Canyon (7.3 m). 

 
 Unsurprisingly, the best predictor for both the wetted width (Eq. 3) and wetted channel 
length (Eq. 4) was summer low-flow (QP10). Response curves (Figure 7) showed striking 
patterns. Overall, wetted width responded linearly to summer low-flow, expanding by ~2 m as 
summer low-flow expanded from ~0.01 to 0.3 m3/s (Figure 7A), or about ±15% of the mean 
width in the Canyon (7.3 m). The only process domain with a statistically significant difference 
in width was the South Tributaries (p = 0.0043). Unexpectedly, wetted width showed a complex 
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trajectory over the course of the 30 years (Figure 7B). Since effects of wet years versus dry years 
would be captured by QP10 in the first panel, this trajectory would seem to reflect true 
geomorphic change in the river system.  
 Proportion of wetted channel length (Figure 7C) was modeled more simply, as a one-
parameter nonlinear model.  The channel stayed mostly connected when QP10 > 0.15 m3/s. 
 
Spawner model 
 According to AIC, the top-ranked spawner model had both the most biologically plausible 
structure (J × L) and the most parsimonious lumping scheme for biennial parr groups (Table 2). 
Relative to models with distinct survival for fish staying one vs two years in the ocean, this top-
ranked model was at least 800 times more likely to make better predictions, and 300 times more 
likely than a model ignoring parr size. Size matters, but not the residence time in the ocean 
apparently. 
 
Table 2. Selection of the spawner model. 
Model 
Structure 

Parr 
Groups K ∆AIC ER 

J × L Lumped 4 0 1 
J + L Lumped 3 2.24 3.1 
J Lumped 2 11.4 300 
J Split 3 13.4 800 
J + L Split 5 18.1 8600 
J × L Split 7 22.9 92000 

 
 In the best spawner model (see Table S3), the coefficient for the J predictor (parr abundance) 
was 0.00181±0.00014, interpreted as the adult return rate per year for a parr group of average 
fork length (81 mm). However, the model assumed each parr group generates two years of adult 
returns, and the spawner counts at San Clemente are biased low (0.57 of total, see §S2), so after 
adjusting for these effects the best estimate for marine survival is 0.00635±0.00035; or in other 
words, 157 end-of-summer parr (1 ÷ 0.00635) produce one adult steelhead, on average over the 
entire baseline period. Note that this definition of marine survival also includes pre-emigration 
winter mortality and smolting rate. 
 Marine survival is quite sensitive to the average size of the parr group (Figure 8A). For the 
group with the smallest parr (67 mm), marine survival would drop from 0.64% to 0.14%, but for 
the year with the largest parr (95 mm), it would rise to 1.12%, an 8-fold range in expected 
marine survival.  
 Figure 8B shows combinations of abundance and fork length that give similar expectations 
for adult returns (isoclines), along with the actual returns that were used to fit the model 
(spawners). Over the past 30 years the population has wandered widely through this prediction 
space, showing that medium runs (200-400 spawners) were generated both by years with many 
small parr and years with fewer large parr. But to get the truly largest runs you need those wet 
years that generate large numbers of large parr. 
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Figure 8. Two visualizations of the spawner model. (A) Predicted spawners at San Clemente per 
year for various fork lengths of parr two and three years earlier. The slope of each line represents 
annual return rate of spawners. (B) The same predictions shown as isoclines in the predictor space, 
with training data (dots) superimposed. 

 
Empirical water scenarios 
 Details of the at-a-station regression models are not reported here, but complete graphs of 
partial effects and reconstructed hydrographs are in the supplement (§S5). These regressions 
were fit with huge datasets (~10,000 observations per gauge) and typically explained >99% of 
variation on the log scale.  

 
Figure 9. Unimpaired flow, as inferred for selected years at Los Padres Reservoir. Shown are a 
very dry year (1994) and a very wet year (1995). Predicted flow (gray) is from a regression of 
measurements upstream of the reservoir (red, blue symbols) onto the daily flow of the Big Sur 
River to the south west, as well as air temperature, annual, and seasonal effects.  

 
 The at-a-station model for natural flow above Los Padres is especially important, because it 
drives the scenarios for dam-removal and unimpaired flow, yet only had monthly data for most 
years. Figure 9 shows reconstructed hydrographs for a very dry and very wet year (See Figure S7 
for the full reconstruction). The regression generally did a good job of predicting late spring and 
dry season flows (red dots vs gray line in Figure 9). It did over- or under-estimate the lowest 
flows in some years (see Figure S7). Figure 9 on the right shows one of two years when daily 
observations were made in the wet season (blue dots); these and monthly observations (red dots) 
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were highly correlated with daily flows in Big Sur River, which were therefore used to infer the 
detailed patterns observed in the gray line. 
 The dam-removal flow pattern had three key features, illustrated for the downstream domains 
in Figure 10. First, the spring low-flow statistic was generally similar to the baseline scenario 
(Figure 10A), though sometimes lower or higher due to removed influence of the reservoir-
filling and -spilling. In the last panel (Figure 10A right), we see the difference between the high- 
and low-infiltration methods in Lower Valley. Variance is slightly wider for the high-infiltration 
method, consistent with the flashiness caused by a low water table. Note that unimpaired flow is 
the same as dam-removal shown here, except that it assumes infiltration is always low in Lower 
Valley, while dam-removal assumes it to be bracketed between low and high.  

 
Figure 10. Dam-removal flow metrics, relative to the baseline. Large dots show where high- and 
low-infiltration methods are the same (Canyon & Upper Valley); small dots and circles show 
where they differ (Lower Valley). A. Spring QP10 is the predictor for length in the parr model. B. 
Summer median flow (QP50) is the predictor for density in the parr model. Dotted axes show the 
minimum detectable flow at the gauge; symbols on these axes are estimates of zero flow. 

  
  The second key feature involved summer median flows in the Canyon and Upper Valley 
(Figure 10B, left and center). In wet years, baseline and dam-removal scenarios were similar, but 
in dry years the dam-removal scenario dropped to much lower levels. This implies that Los 
Padres Reservoir has maintained summer flows at unnaturally high levels, typical of many 
reservoirs in the arid southwest.  
 The third key feature is that this pattern reverses in the Lower Valley due to assumptions 
about groundwater. Seventeen years had zero flow in the baseline scenario, but maintained 0.002 
to 0.03 m3/s in the version of dam-removal with low-infiltration. This was comparable to Upper 
Valley. In the high-infiltration version, these seventeen years and another two went back to zero. 
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Figure 11. Predicted effects of water scenarios on adult steelhead returns, relative to baseline. Bars 
show median and 66% interval for responses of 23 brood years (1993-2015). A. Scenarios using 
the Basin Hydrologic Model (BHM), with two methods for bias-correction (BC; see Table 1). B. 
Empirical scenarios constructed using at-a-station regression models, and two bracketing 
assumptions for infiltration in the Lower Valley. 

 
Steelhead population response 
 We report each scenario as the additional adults produced per brood year, relative to the 
baseline. For reference, the baseline had a median run of 388 spawners in this period. Note that 
all adult returns are calibrated as migrant counts at the former San Clemente Dam site; counts for 
the entire population are estimated to be about 75% higher (1/0.57 = 1.75; see Supplement §S2). 
 In the BHM scenarios (Figure 11A), the two bias-correction methods gave similar rankings 
among the scenarios, but the seasonal method generated bigger responses on an absolute scale. 
Unimpaired flows generated the strongest response, by a large margin; and dam-removal the 
weakest response, by a small margin. The CDO scenario performed slightly better than dam 
removal, and the two dam-expansion scenarios performed slightly better still. Overall these 
responses were on the order of 30-50 additional adult steelhead per year (50-90 for entire 
watershed), although the error bars indicate much year-to-year variability, and none performed as 
well as the unimpaired scenario. 
 The empirical scenarios (Figure 11B) rank similarly to the BHM scenarios, but their response 
is smaller overall, and indeed the response for dam-removal + high infiltration is negative—
worse than the baseline scenario, which also has high infiltration but higher summer flows 
maintained by the reservoir. The establishment of low infiltration in Lower Valley produces a 
substantial positive response across all scenarios, such that the worst response (Dam Removal) is 
comparable to the best response under high infiltration (LP Dredge/4482). Note that the 
unimpaired scenario—omitted from Figure 11B—is identical to dam-removal/low infiltration. 
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Discussion 
 Our regression approach emphasized precision and out-of-sample prediction, but also realism 
within the constraints of generalized additive models. Findings were generally coherent and 
sensible, although not always expected.  
 Parr size and abundance both showed signs of a realistic, density-dependent response to 
spawner abundance, but flow also played a role, with minimum flows in spring predictive of parr 
size and median flows in summer predictive of parr density. Parr size and density themselves 
showed correlations consistent with self-thinning processes, suggesting that spring flow is the 
primary driver of parr growth, size, and—via self-thinning—density at the end of summer. This 
seems the most plausible explanation for the negative relationship between summer flow and 
parr density at the end of summer (Figure 6B), suggesting fish largely set up their spatial 
distribution by mid-summer.  
 The main role of summer flow appeared to be simply the maintenance of habitat area and 
connectivity. Longitudinal connectivity was largely maintained by keeping QP10 > 0.10 or 0.15 
m3/s, which also maintained a wetted width of 7 – 8 m on the mainstem. About one meter of 
wetted width was added for each additional 0.15 m3/s (≈5 ft3/s). 
 However, we cannot disprove a role for summer flow on fish growth, due to the limitations 
of the data and our approach: Spring flow was most predictive of size, but summer flow could 
also be predictive (we limited ourselves to one predictor), and of course spring and summer flow 
are correlated and therefore confounded in the dataset. Such confounding is always the case for 
uncontrolled experiments such as the water management scheme in Carmel River. In the 
Mediterranean climate of California, parr growth during the low-flow conditions of summer is 
often quite limited (Hayes et al. 2008; McCarthy et al. 2009; Kelson and Carlson 2019), but not 
everywhere (Rundio and Lindley 2008), and sometimes higher summer growth is associated with 
higher flow (Harvey et al. 2005). But typically, growth is fastest in winter and spring (Hayes et 
al. 2008; Sogard et al. 2009; Kelson and Carlson 2019), consistent with our finding. 
 
Dam removal and dam rehabilitation 
 In the dam-removal and unimpaired scenarios, the summer low-flow metric routinely 
dropped below the threshold for connectivity (0.10 m3/s) in both the Canyon and Upper Valley, 
whereas in the baseline it mostly stayed above it (Figure 10). These diminished summer flows 
partially explain the weak population response to dam-removal, although presumably the fish are 
adapted to these low flows since they also characterize the unimpaired scenario, and indeed are 
typical in coastal California (Hayes et al. 2008; Boughton et al. 2009). 
 Of course, dam-removal has other benefits for fish, including improved upstream passage for 
migrating adults, and especially the restoration of sediment regimes that reverse ongoing channel 
incision and more generally drive habitat-forming processes (Bednarek 2001; Tullos et al. 2014; 
East et al. 2015). For example, Harrison et al. (2018) found that after removal of San Clemente 
Dam from Carmel River, deposition of gravel enhanced steelhead spawning habitat downstream 
of the dam. Even so, a preponderance of sand as well as turbidity patterns during high-flow 
events suggested the river was still starved of gravel by Los Padres Dam (Harrison et al. 2018; 
Smith et al. 2021). 
 The dam-removal scenario also restored the 80% of parr that were assumed to disappear into 
the reservoir. Because these parr tended to be smaller than parr elsewhere, and only 17% of total 
accessible stream channel was above the dam, its removal generated surprisingly modest 
population responses. The various dam-rehabilitation scenarios generated slightly larger 
responses, mostly by maintaining continuous surface flow in the Lower Valley. Of these 
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rehabilitation scenarios, the biggest marginal gain was achieved simply by the water company 
obeying the law—relative to baseline, the scenario CDO/3376 added 20 to 50 adult steelhead per 
year across the various methods in Figure 11. Further expansion of the water right by reservoir 
dredging only adds an additional 10 adults at best, except when infiltration is low in the Lower 
Valley. Then it could add 25 to 45 more adults per year. 
 
The Importance of Lower Valley 
 In fact, across all scenarios the population response was quite sensitive to infiltration 
conditions in Lower Valley (e.g. Figure 11B). This sensitivity rested on two specific factors: the 
Lower Valley had large parr—40% larger than the Canyon on average—and was vulnerable to 
loss of surface flow. Thus, scenarios that maintained perennial flow in the Lower Valley tended 
to generate outsized pulses of large parr that boosted adult returns, simply due to a larger wetted 
area. 
 Here is where the realism of the regression approach must be considered carefully. The 
occurrence of larger fish in the Lower Valley was also emphasized by Snider (1983) and 
Dettman and Kelley (1986), so it appears to be a consistent habitat association. Our statistical 
approach assumed that such fish would fill the available habitat (wetted area), which is also 
consistent with past observations. For example, before 1991 the entire Upper and Lower Valley 
dried out in most summers, but during the exceptionally wet year of 1982, when the river stayed 
relatively well connected to the estuary for the first time since at least 1960 (Figure 1a), Dettman 
and Kelley (1986) found large parr throughout the Lower Valley. So the two key factors driving 
the Lower Valley predictions are reasonable, although the underlying biological mechanism is 
unclear. 
 One potential mechanism is that faster-growing parr accumulate in the Lower Valley, either 
due to favorable growth conditions in this sort of alluvial channel (Moore 1980), or in the 
adjacent estuary (Bond 2006). Another potential mechanism is that age 1 fish tend to accumulate 
in the Lower Valley, due to downstream movements of age 0 parr the previous winter (Sogard et 
al. 2009; Kelson and Carlson 2019). The latter is consistent with extensive scale analyses 
reported by Dettman and Kelley (1986), who in the wet year 1982 found age 0 parr tended to 
predominate throughout the Carmel River system except in the Lower Valley, where age 1 parr 
predominated. In a small tributary of the South Fork Eel River with a similar mediterranean 
climate, Kelson and Carlson (2019) observed a distinct pulse of downstream parr movement 
during the first few rainstorms of the wet season, suggesting that this may be a common life-
history strategy for O. mykiss in these sorts of seasonal rain-fed stream systems. Of course the 
two potential mechanisms of faster growth and age 1 habitat are not mutually exclusive 
 In our regression approach, we only modeled the predominant size class in each stream 
reach, and treated the influence of other size classes as random effects held constant across 
scenarios. This would tend to magnify the distinction between Lower Valley and the other 
domains, because in reality when Lower Valley is dry the age 1 fish might tend to accumulate 
throughout the other domains in a way that is not captured by our regression approach.  
 Yet continuous surface flow in Lower Valley appears to be an important predictor of large 
spawner abundances two and three years later. This pattern was reported by Arriaza et al. (2017), 
and the exceptionally wet year of 2017 reprised the pattern yet again, when sites in the Lower 
Valley had median parr size greater than 110 mm for the first time since 2000, and adult returns 
subsequently bumped up in 2019 and 2020 from earlier, very low levels. The very large effect of 
spring flow on fish size at end of summer (visible in Figure 6F for spring QP10 > 3 m3/s) reflects 
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this pattern, because these wettest springs were the same years when the Lower Valley retained 
surface flow throughout the dry season. 
 
Holding all else constant 
 By design our statistical approach was a conservative look at the effect of flow, holding all 
else constant including the rescued fish and the number of spawners. In reality wetter scenarios 
would tend to generate fewer strandings and require fewer fish rescues, but we held this effect 
constant. Interestingly, the number of rescued fish released into a domain was positively 
associated with density at end of summer (p < 0.0001), but not with size. This suggests that a 
substantial number of rescued fish survived to the end of summer, without imposing any 
negative effects on growth rates of in situ fish. This in turn implies asymmetric competition for 
food between the rescued and in situ fish, consistent with many conceptual models of salmonid 
ecology (e.g. Hughes 1998). 
 We also held spawner abundance constant, but in reality both the positive and negative 
effects of a scenario on spawner abundance would compound exponentially over multiple 
generations. Thus, our results are best viewed as a series of independent trials (one per year) than 
as a simulation of population dynamics. In a second set of simulations (not reported here), we 
included the compounding effect of spawner abundance but obtained a similar, though 
marginally more modest, response of the population to the various scenarios. Thus the positive 
and negative compounding effects of population growth and decline, respectively, appeared to 
roughly balance each other out. 
 Finally, our statistical approach focused on the most abundant age class at each sample reach, 
which for most sites is age 0 fish, but for sites in the Lower Valley is usually age 1 fish. The 
effect of age 1 fish elsewhere was treated as a random effect that was held constant, which may 
be simplistic. 
 
Conclusions 
 To summarize, the population responses to the various dam-rehabilitation scenarios as well 
as to the dam-removal scenario were moderately positive and comparable in magnitude. Low-
infiltration in the Lower Valley was at least as beneficial as the various dam scenarios for 
improving spawner abundance, and highlights the unique role of the Lower Valley in population 
productivity as well as the key importance of maintaining surface flow during the dry season. A 
substantial portion of variability in spawner abundance appears to be driven by spring flow 
conditions rather than summer flow conditions, via its effect on somatic growth in early life 
history.  
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Supplementary Material 
 
S1. Spawner Counts 
 Spawners have been counted in Carmel River in three ways: annual counts at San Clemente 
Dam; annual counts at Los Padres Dam, and sporadic surveys of egg nests (redds). 
 The series of counts from the two dams omit downstream spawners, but we believe them 
each to be reliable indicators of relative abundance across years, for the following reasons: 1) 
The counts from the two dams are highly correlated (Figure S1); 2) the relative abundance of San 
Clemente vs Los Padres counts are about the same as the relative amount of habitat upstream of 
each dam, and 3) analysis of the redd surveys (see §S2 below) suggested that redd occurrence is 
similar across the Canyon domain (where San Clemente Dam was located) and the Upper Valley 
Domain (which is below the San Clemente site and thus represents fish not counted at the dam). 
Redd occurrence in Lower Valley appears to be systematically lower than in Upper Valley and 
Canyon (see §S2 below) 
 We used San Clemente counts to represent abundance, because they are more complete than 
Los Padres counts and more systematically collected than redd data. However, San Clemente 
Dam was removed in 2015, so we used the counts at Los Padres to infer counts at the San 
Clemente site from 2016 onward (see §S3 below). Based on redd surveys, we estimate that San 
Clemente counts represent about 57% of the total spawner abundance of the entire river system 
on average (see §S2 below). 
 
S2. Analysis of Redd Surveys 
 Redd surveys were conducted sporadically by the local water district over the years, between 
Los Padres Dam and the estuary. Unfortunately, the haphazard sampling plan of these surveys 
makes them unsuitable for estimating true redd abundance, but we did assess how redd counts 
per reach vary among years, individual reaches, and process domains, including also the San 
Clemente adult counts as a covariate. The random effects of year and reach need to be 
interpreted cautiously because they reflect not just temporal and spatial variation in redd counts, 
but also the nuisance effects of the haphazard sampling plan. We assume the random effects 
capture these nuisance effects, and interpret fixed effects of process domain more confidently.  
 The redd data are zero-inflated, which means stream reaches observed to have zero redds 
occur disproportionately to other counts (nonzero), a common feature of population surveys. We 
thus analyzed the counts using a zero-inflated Poisson model (ZIP model; see mgcv::ziplss in the 
R package mgcv). The ZIP model has two linear predictors (regression equations). One predicts 
redd occurrence per sample reach using logistic regression (0 redds vs >0 redds), the other 
predicts redd abundance when they occur using Poisson regression (number of redds, given 
number of redds is > 0). Table S1 summarises the results. 
 Not surprisingly, spawner abundance was a significant predictor for both redd occurrence 
and redd abundance (Table S1C). Encouragingly, once this annual effect of spawner abundance 
was taken into account, the random effect of year on redd occurrence was not statistically 
significant (p = 0.14; Table S1B), suggesting that the haphazard sampling did not bias the annual 
mean occurrence. This was not the case for redd abundance (p < 0.0001), although this random 
effect of year could stem from a variety of sources, including flow conditions. 
 Focusing on the fixed effects of process domain (Table S1A), we see that average redd 
abundance in Lower Valley and in Upper Valley were not significantly different from average 
abundance in Canyon (p = 0.57 and p = 0.56, respectively). 
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Table S1. Terms of a generalized additive model for redd counts. 
A. Fixed effects  Estimate SE t p 
Redd Abundance     
  Intercept (Canyon) 0.5551 0.180  3.087  0.002  
  Lower Valley  -0.151  0.270  -0.562  0.57 
  Upper Valley 0.151 0.256 0.588  0.56  
Redd Occurrence     
  Intercept (Canyon)  -1.1055  0.1301  -8.4993  < 0.0001  
  Lower Valley  -0.6757  0.2033  -3.3233  0.0009  
  Upper Valley  0.1686  0.1952  0.8639  0.39  
 
B. Random Effects  

 
edf 

 
Ref. df 

 
F 

 
p 

Redd Abundance     
  Year 18.4  30.0 95.72  < 0.0001  
  Reach 71.9  140.0  352.3  < 0.0001  
Redd Occurrence     
  Year 4.3 30.0 5.62 0.14  
  Reach 83.0  165.0  164.7  < 0.0001  
 
C. Smooth terms  

 
edf 

 
Ref. df 

 
F 

 
p 

Redd Abundance     
  s(Spawners) 1.0 1.0 12.27  0.0005  
Redd Occurrence     
  s(Spawners)  4.7 5.3  70.93  < 0.0001  

  
 
Redd occurrence, however, was similar between Canyon and Upper Valley (p = 0.39), but was 
significantly lower in Lower Valley (p = 0.0009). Recalling that the estimates for the occurrence 
portion of Table S1A are for logistic regression, after transformation the mean occurrence of 
redds per reach per survey is 0.265 for the Canyon + Upper Valley, but is only 0.144 for the 
Lower Valley. These values are difficult to interpret due to the haphazard sampling plan, but 
their relative rates are more meaningful because the different process domains probably suffer 
from similar sampling biases. The relative rate of redd occurrence is 0.545 (=0.144/0.265) in the 
Lower Valley, relative to the reaches upstream. This finding is consistent with the lower 
abundance of age 0 fish observed there (Figure 3), as well as the predominance of sandy channel 
in this domain prior to removal of San Clemente Dam. Sandy substrate is not suitable for 
steelhead spawning. 
 From this analysis, we can roughly estimate the bias of the San Clemente counts, which omit 
fish spawning downstream of the dam. If occurrence of redds is similar throughout the watershed, 
except in Lower Valley, then we predict the bias from the ratio of stream kilometers above and 
below the dam site, discounting kilometers in Lower Valley by 0.545. This calculation suggests 
that the fraction of total spawners counted at San Clemente averages about 0.57. 
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S3. San Clemente Counts after 2015 

 
Figure S1. A. Counts of adult steelhead at San Clemente Dam (SCD) and Los Padres Dam (LPD), 
prior to removal of San Clemente Dam in 2015. Zero counts at both sites prior to 1992 are 
omitted. B. The ratio predictor f with the fitted second-order prediction line, used to infer SCD 
counts after 2015. 

 
We used the counts of adult steelhead at the San Clemente Dam fish-ladder as the primary 
indicator for population response, in accordance with general NMFS practice of using adult 
abundance as an indicator for population risk status (Allendorf et al. 1997; Boughton et al. 2007; 
Lindley et al. 2007; Spence et al. 2008). These counts are biased low in that they omit adults who 
spawned downstream of San Clemente Dam, but are still the most reliable indicator for adult 
abundance of the population. However, San Clemente Dam was removed in 2015 so we need to 
somehow infer counts for 2016 onward. Fortunately, the counts at San Clemente are highly 
correlated with the counts at Los Padres (Figure S1A), so we can use the latter to predict the 
former. 
 In principle we could simply fit a regression to the points in Figure S1A, but we found the 
properties for the residual variance were better if modeled the predictor as a ratio, 
 

Eq. S1 𝑓𝑓 = 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑆𝑆𝑆𝑆𝑆𝑆−𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿+1

�, 
 
which is plotted in Figure S1B. This equation simply represents the ratio of fish spawning above 
Los Padres Dam versus between the two dams, modified by adding 1 to the denominator and 
log-transforming, so as to stabilize the variance near zero. Since most of our counts after 2015 
are small numbers, we want it to perform well near zero. Once we have fit a regression to f, we 
use it to predict spawner abundance from the counts at Los Padres Dam, using the reverse 
equation: 
 

Eq. S2 𝑁𝑁 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([𝐿𝐿𝐿𝐿𝐿𝐿 + 1]10𝑓𝑓 + 𝐿𝐿𝐿𝐿𝐷𝐷) 
 
Other advantages of this approach are that the predicted counts at San Clemente are always 
greater or equal to the counts at Los Padres, and the predictor accounts for the fact that prediction 
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error only occurs for the fish spawning between the two dams, not for the fish spawning above 
Los Padres. 
 Curvature in the point cloud can be observed in both panels of Figure S1, so we fit a second-
order polynomial regression to predict f, illustrated in Figure S1B. The predicted values of f and 
N for 2016 onward are in Table S2. 
 

Table S2. Predictors and predictions for spawner abundance 
after the removal of San Clemente Dam. 

Year LPD f N 
2016 0 0.70 5 
2017 7 0.68 45 
2018 29 0.62 153 
2019 126 0.38 430 
2020 65 0.52 284 
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S4. Addressing “the Zero Problem” for Bias-Correction of Daily Flows 
 

 
Figure S2. An example of “the zero problem” from summer 1997, where each dot is same-day daily 
flow at the two gauges, and the lines connect them as a time series. As daily flow recedes over the 
course of the summer, the disparity (distance from dashed line) widens between the Upper Valley gauge 
(x-axis) and Lower Valley gauge (y-axis), due to infiltration. The vertical arrow marks a transition point 
below which all surface flow at Upper Valley infiltrates before Lower Valley. Below this transition, the 
key assumption of the bias-correction method is not valid. 

 
  In addition to the bias-correction method of Eq. 5,  we also addressed the “zero problem” in 
Lower Valley caused by its low water table and high infiltration rate (Figure S2). The modeled 
baseline never predicted zero flow, a clear mismatch from reality in Lower Valley that implies 
infiltration and water-table dynamics were not well represented by the BHM. Our bias-correction 
method cannot address this, but a simple statistical fix is to assume that the Lower Valley has a 
fixed daily infiltration capacity, and to estimate it as the highest flow at Upper Valley that had 
zero flow observed at Lower Valley (vertical arrow in Figure S2). To use this assumption in the 
seasonal bias correction, we replaced the zeros at Lower Valley with the corresponding metric at 
Upper Valley, subtacted the infiltration capacity, and then applied Eq. 5. If the resulting value 
was positive, we assumed net surface flow that overcame the infiltration capacity of Lower 
Valley; if it was negative we assumed it all went into the aquifer and set the metric to zero. For 
the daily version of bias correction, we did the same but assumed a distinct infiltration capacity 
each year, estimated as the flow at Upper Valley on the first day each year where flow was zero 
at Lower Valley.  
 This statistical approach may be somewhat optimistic, since it assumes that infiltration 
capacity is fixed over the dry season, when in fact the water table is probably being progressively 
drawn down by continued water withdrawals. 
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Table S3. Estimated terms of the spawner model 
Predictor1 Coefficient SE t p 
Parr Abundance (N) 0.00181 0.00014 13.4 <10-11 
Fork Length (mm) 0.83 9.04 0.092 0.93 
Interaction 0.000096 0.000043 2.23 0.036 

1 Fork length predictor centered on the grand mean of all reaches in all years (80.9 mm), so parr coefficient 
represents survival of a cohort whose mean fork length is 80.9 mm. 
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S5. Partial effects and reconstructed hydrographs from at-a-station models 
 
 

 
Figure S3. Partial effects for unimpaired flow above Los Padres Reservoir (LP gauge). The main 
predictor for flow was daily gauge data from the Big Sur River (A), but air temperature (B), 
implicit annual trends (C) and implicit seasonal trends (D) were also selected as predictors. 
Vertical axis “OoM” is Order of Magnitude. 
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Figure S4. Regression terms for predicting flow in the Canyon (SH gauge) from upstream gauges 
(A). Mean air temperature (B), implicit seasonal trends (C) and one two-interaction (D) were also 
selected as predictors. Vertical axis “OoM” is Order of Magnitude. The main upstream gauge (BL, 
releases from Los Padres Reservoir) has no data prior to 2001, so a smooth year term was omitted 
from the model. 
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Figure S5. Regression terms for predicting flow in the Upper Valley (DJ gauge) from upstream 
gauges (A). Mean air temperature (B), implicit annual trends (C), implicit seasonal trends (D), and 
one two-interaction (E) were also selected as predictors. Vertical axis “OoM” is Order of 
Magnitude. 
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Figure S6. Regression terms for predicting flow in the Lower Valley (NC gauge) from upstream 
gauges (A). Mean air temperature (B), implicit annual trends (C), implicit seasonal trends (D), and 
a two-interaction (E) were also selected as predictors. Vertical axis “OoM” is Order of Magnitude. 
The link function of the regression model was a censored tobit distribution to handle the numerous 
zero observations in the Lower Valley. 
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Figure S7. Reconstructed unimpaired flow at Los Padres Reservoir (gray), based on training data 
(circles) from measurements upstream of the reservoir. 
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Figure S8. Empirical hydrographs in the Canyon Domain (Sleepy Hollow gauge), for the baseline 
scenario (red) and the unimpaired/dam-removal scenario (blue). 
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Figure S9. Empirical hydrographs in the Upper Valley Domain (Don Juan gauge), for the baseline 
scenario (red) and the unimpaired/dam-removal scenario (blue). 
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Figure S10. Empirical hydrographs in the Lower Valley Domain (Near Carmel gauge), for the 
baseline scenario (red), the unimpaired scenario (light blue), and the dam-removal scenario (dark 
blue). 
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