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Executive Summary 

Humpback whales (Megaptera novaeangliae) off the U.S. West Coast are a mixture of 

whales from different Distinct Population Segments (DPSs) under the U.S. Endangered 

Species Act (ESA), predominantly Central America and Mexico. Within DPSs, 

demographically independent populations (DIPs) of humpback whales are delineated as 

‘migratory herds’ that share both wintering and feeding areas (Martien et al., 2020). The 

Central America DPS, composed of those whales that winter along the Pacific coast of 

Central America from Panama to Guatemala, corresponds to a single DIP that migrates 

almost exclusively to the U.S. West Coast. This DIP’s wintering area is understood to 

extend into southern Mexico, and it is termed the CentAm/SMex-CA/OR/WA DIP for its 

wintering area and its feeding area off California, Oregon, and Washington (Fig. 1) 

(Taylor et al., 2021). The Mexico DPS includes multiple DIPs, with the DIP that migrates 

between northern mainland Mexico and the U.S. West Coast correspondingly termed 

the MMex-CA/OR/WA DIP (Martien et al., 2021). DIP-specific estimates of the number 

of whales using the U.S. West Coast Exclusive Economic Zone (EEZ), which are thus 

equivalent to estimates of the number of whales from each DPS using this feeding area, 

would be useful for management and decision-making involving these population units. 

We estimated abundance for the CentAm/SMex-CA/OR/WA DIP from photo-

identification data collected in their wintering area from 2019 to 2021. A randomization 

test suggested some fidelity in individual space use off Central America and Southern 

Mexico, implying that variable effort in time and space should be considered in capture-

recapture estimates. We fitted a closed, one-dimensional spatial capture-recapture 

model to annual capture histories using a Bayesian framework. We accounted for 

uncertainty in the northern limit of the population and in the potential for movement of 

individuals across that limit by varying the northern population limit within the base 

model and exploring sensitivity to the northern boundary of the model domain in two 

alternate models.  

We multiplied posterior distributions of abundance from the base and alternate models 

by a correction factor distribution, which was based on prior and new simulation work 

quantifying key expected sources of bias. The main sources of bias anticipated in 

estimating abundance for this dataset from a closed population model include births and 

deaths during the period of data collection, exclusion of first-year calves from the 

dataset, and sex heterogeneity in capture probability, which we assessed at a 3.4-fold 

(CV=0.463) greater chance of photo-identifying male individuals than females off 

Central America and Southern Mexico. The mean resulting correction factor is 1.35 

(CV=0.143).  

The base model produces a mean bias-corrected abundance estimate of 1,496 

(CV=0.171), with a 20th percentile of 1,284. Alternate models with different northern 

model domain boundaries produce mean bias-corrected estimates of 1,313 (CV=0.167) 

and 1,601 (CV=0.166), corresponding to -12% and 7% differences in the 20th percentile 

from the base model. Comparison of the new abundance estimate for the 
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CentAm/SMex-CA/OR/WA DIP to one from 2004-06 that omits southern Mexico (Wade, 

2021) suggests that the annual population growth rate is much lower than the 8.2% rate 

estimated for humpback whales off the U.S. West Coast as a whole (Calambokidis and 

Barlow, 2020). Population growth rate calculated directly from the current estimate 

including Southern Mexico and the Wade estimate is 4.8% per year (SD = 2.0%). 

Resummarizing our model results to exclude Southern Mexico animals results in a rate 

of 1.6% per year (SD = 2.0%). 

We deduced the number of humpback whales from the MMex-CA/OR/WA DIP 

migrating to the U.S. West Coast EEZ by subtracting the new estimate for the 

CentAm/SMex-CA/OR/WA DIP from the most recent estimate of total abundance in the 

U.S. West Coast EEZ used in the draft 2021 stock assessment report (Calambokidis 

and Barlow, 2020; 86 FR 58887, October 25, 2021). The resulting mean estimate of 

abundance for humpback whales from the MMex-CA/OR/WA DIP using U.S. West 

Coast waters is 3,477 animals (CV=0.101).  

 

Introduction 

Humpback whales (Megaptera novaeangliae) have a circumglobal distribution, with 

most populations migrating between high-latitude feeding areas and low-latitude 

wintering areas (Kellogg, 1929). Individuals show fidelity to both their feeding and 

wintering areas. In the North Pacific, the relationships among humpback whale 

wintering and feeding areas are predominantly many-to-many, with animals from 

multiple wintering areas occurring in one feeding area, and vice versa (Calambokidis et 

al., 2001; Baker et al., 2013).  

Under U.S. law, humpback whales are protected by the Endangered Species Act (ESA) 

and the Marine Mammal Protection Act (MMPA). While the two laws share similar goals 

of conservation and management of threats, the units for conservation differ. The unit of 

conservation under the ESA is a taxonomic species or a Distinct Population Segment 

(DPS) of a species. The unit of conservation under the MMPA is a “stock” of marine 

mammals, usually comprised of one or more demographically independent populations 

(DIPs).  

Humpback whales in the North Pacific have been split into five DPSs under the ESA, 

based on genetic differences among wintering areas (Baker et al., 2013; 81 FR 62260, 

September 8, 2016). The vast majority of humpback whales occurring off the U.S. West 

Coast belong to the Central America DPS and the Mexico DPS (Calambokidis et al., 

2000; Wade et al., 2016), which are listed as endangered and threatened, respectively, 

under the ESA. A much smaller number of whales from the Hawaii DPS have also been 

sighted or tagged in U.S. West Coast waters (Palacios et al., 2020; Calambokidis et al., 

2000, 2001), and one animal seen near the border of Washington and British Columbia 

was even identified as being from the Western North Pacific DPS (Darling et al., 1996). 
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At the population level, individuals that share both feeding and wintering areas are 

considered to belong to the same “migratory herd”, a unit considered to be 

demographically independent from other migratory herds (Martien et al., 2020). Almost 

all whales in the Central America DPS migrate to the U.S. West Coast to feed, which 

corresponds to a single demographically independent population (DIP), known as the 

CentAm/SMex-CA/OR/WA DIP (Taylor et al., 2021). Whales from the Mexico DPS 

migrate either to the U.S. West Coast or to destinations further north off British 

Columbia, Alaska, the Aleutian Islands, and Russia, so they include multiple DIPs 

(Calambokidis et al., 2000; Urbán et al., 2000; Wade et al., 2016; Martien et al., 2021; 

Cheeseman, unpublished data). Those whales migrating from mainland Mexico to the 

U.S. West Coast are termed the MMex-CA/OR/WA DIP (Martien et al., 2021). Recent 

population estimates are available for total humpback whales in the U.S. West Coast 

EEZ (Becker et al., 2020; Calambokidis and Barlow, 2020), but not for abundance of 

whales from each of the two main contributing DIPs, which also would align with DPS-

specific abundances. 

The abundance of humpback whales in the North Pacific has been estimated at the 

basin scale and for individual feeding and wintering areas from photo-identification data 

collected in a coordinated effort called SPLASH (Structure of Populations, Levels of 

Abundance and Status of Humpback Whales in the North Pacific) (Barlow et al., 2011; 

Wade et al., 2016; Wade, 2021). SPLASH sampled all known wintering and feeding 

areas of humpback whales synoptically and repeatedly from 2004 to 2006 

(Calambokidis et al., 2008). The wintering area abundance estimate from SPLASH for 

the Central America DPS is now 17 years old and also geographically out of date. Very 

few samples were obtained from Southern Mexico during SPLASH, and it was not 

included in either of the adjacent DPSs (Central America or Mexico) in analysis. The 

wintering area of the CentAm/SMex-CA/OR/WA DIP is now recognized as including 

southern Mexico based on recent photo-identification and genetic data, adding many 

animals to the population and rendering historic estimates inapplicable (Fig. 1; García 

Chávez et al., 2015; Ramírez Barragan et al., 2019; Martínez-Loustalot et al., 2020; 

Taylor et al., 2021). The abundance of humpback whales off the U.S. West Coast has 

been updated using mark-recapture analysis of photo-identification data collected off 

California and Oregon, with the most recent estimate (4,973 ±239 SE) based on data 

from 2015 to 2018 (Calambokidis and Barlow, 2020). A separate study using 

independent data and a different approach, habitat-based density estimation based on 

2018 line-transect data along the entire U.S. West Coast, arrived at similar numbers, 

though with less precision (4,784 ±1,469 SE) (Becker et al., 2020). The former estimate 

was used in the draft 2021 stock assessment report for California/Oregon/Washington 

humpback whales (86 FR 58887, October 25, 2021). 

Humpback whale photo-identification effort varies temporally and spatially off the 

Central American, Mexican, and U.S. West Coasts, which violates the assumptions of 

simple mark-recapture analysis methods. Moreover, humpback whales off the U.S. 

West Coast have been observed to exhibit spatial fidelity within their feeding area, 
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returning to similar locations each year (Calambokidis, unpublished data), which leads 

to individual heterogeneity in capture rates if effort is not spatiotemporally uniform. 

Similar individual fidelity to specific wintering locations is also likely. Spatial capture-

recapture models, originally developed for terrestrial wildlife studies employing camera 

trap arrays, allow analysis of data with spatiotemporal heterogeneity in capture 

probability and individual variation in space use. These models have been adapted to 

one-dimensional systems, such as rivers, which closely approximate the narrow band of 

habitat along the coast that humpback whales inhabit (Royle et al., 2013).  

We conducted a closed-population, mark-recapture analysis to estimate abundance of 

the CentAm/SMex-CA/OR/WA DIP from photo-identification data collected in its 

wintering area. First, we assessed divergence of individual space use from random for 

this population within its wintering area. We adapted a closed, one-dimensional, spatial 

capture-recapture framework to the context of spatially continuous photo-identification 

data collected in a narrow coastal band without effort information, and estimated 

population size from three years of spatial annual capture histories from 2019 to 2021. 

Sex heterogeneity in capture probability can also be an important source of bias in 

abundance estimates based on photo-identification data from wintering areas (Brown et 

al., 1995; Barlow et al., 2011). We estimated sex heterogeneity in capture probabilities 

in the CentAm/SMex-CA/OR/WA DIP’s wintering area from capture histories of known-

sex animals, quantified this source of anticipated bias in the abundance estimate using 

simulation, and combined the results with existing estimates of bias due to births, 

deaths, and exclusion of first-year whales from the North-Pacific-wide analysis to 

estimate a corrected abundance (Barlow et al., 2011). Finally, we calculated an 

estimate of the number of whales from the MMex-CA/OR/WA DIP using U.S. West 

Coast waters by subtracting the abundance estimate for the CentAm/SMex-CA/OR/WA 

DIP from the most recent U.S. West Coast capture-recapture-based abundance 

estimate.  

 

Methods 

We used sightings of humpback whales that were individually identified based on 

pigmentation, scarring, shape, and trailing edge serration in photographs of the ventral 

side of their flukes. These were collected both opportunistically and during dedicated 

research surveys, primarily from small vessels conducting daily trips from different 

locations in five Central American countries and southern Mexico (western Panama to 

Guerrero, Mexico) during the winter season. The winter season for a given year is 

defined as November of the preceding year to April, and also corresponds to the annual 

occasions we used for mark recapture analysis, so henceforth “year”, “annual”, or 

“occasion” all refer to this definition of the winter season. While our analysis focused on 

the data from the 2019 to 2021 seasons, we also used the entire available data series 

from 1988 to 2021 for some elements of the analysis as detailed below. These 

photographic identifications have been the basis of a number of past analyses using 
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subsets of these data (e.g., Rasmussen et al., 2011; Dobson et al., 2015; García 

Chávez et al., 2015; Steiger, et al., 2017; Ramírez Barragan et al., 2019; Ortega-Ortiz et 

al., In press). These include a coordinated effort and analyses from a collaborative 

North-Pacific-wide effort called SPLASH, conducted from 2004 to 2006, that included 

Central America and southern Mexico (Calambokidis et al. 2008, Barlow et al. 2011, 

Wade et al. 2016).  

Photographic equipment and scoring and matching of identification photographs have 

changed through the years. Prior to 2005, photographs were generally taken with film 

SLR cameras with telephoto lenses, and after 2005, generally with Digital SLR 

cameras. For each individual humpback whale photographed in an encounter, the best 

photograph of the ventral side of the fluke was selected. Photographs were historically 

assigned to three quality levels based on five quality features (proportion visible, vertical 

angle, lateral angle, focus/sharpness, and exposure), using the same process 

developed previously (Calambokidis et al., 1997, 2000, 2008); more recently, a fourth, 

lower quality category has been added, as automated matching capabilities exceeded 

manual matching capabilities (see below) (Table 1). Photographs in the lower two 

quality levels were generally only retained for matching under special circumstances 

(e.g., photographs of individuals with a biopsy or known since birth). Photographs of 

individuals that matched the existing Cascadia Research Collective catalog of known 

individuals were assigned the corresponding identification number; those that did not 

match were assigned a new identification number and added to the catalog as new 

individuals. Through 2015, matching was performed manually by experienced matchers 

who compared photographs to similar ones based on general coloration patterns 

(Katona and Whitehead, 1981). From 2016 onward, increasing levels of automated 

matching were incorporated into the photo-identification matching process as 

automated matching algorithms developed and implemented through the Wildbook and 

Happywhale platforms. Initially, image recognition automation assisted with finding 

matches while manual review was retained to confirm new individuals (Flynn et al., 

2017; Weideman et al., 2017; Weideman et al., 2020). In 2019, a sufficiently accurate 

algorithm was established that exceeded the accuracy of manual matching, allowing 

review of all previous identifications and more rapid management of new data 

(Cheeseman et al., 2021). All matches continue to be verified by humans.  

We used data from the most recent three years (2019-2021), aggregated to annual 

occasions, to estimate abundance with a closed capture-recapture model. During this 

time, photographic identifications were not gathered in all locations in every year, 

especially in 2020 due to the start of the global pandemic in March, and identifications 

came from varying amounts of survey time in each region (Table 2). In 2021, a 

coordinated undertaking to obtain identifications in all countries/regions resulted in more 

dedicated surveys, more even effort among locations, and the largest sample of 

identifications compared to any previous year (Table 2). For the 2019-2021 period, 

information on survey effort was available only for 2021 at the time of the analysis.  
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Several violations of the assumptions of a closed-population model with constant 

capture probability among occasions and individuals (i.e., an M0 model) are likely for 

this dataset, including (1) variation in effort with time, (2) non-random sampling of the 

population, (3) errors in photo matching to the catalog, and (4) violation of the 

population closure assumption. These sources of bias were, where possible, assessed 

directly for this population, and addressed through data filtering, model specification, or 

estimation of bias correction factors from simulation.  

 

Data filtering 

Photographs in the lower two quality levels were omitted to minimize one cause of non-

random sampling, individual heterogeneity in capture probability resulting from lower 

quality thresholds for individuals of interest. With use of Happywhale’s matching 

algorithm, this quality filter, and exclusion of first-year whales (which may undergo 

substantial change in markings), bias due to missed matches is expected to be 

negligible in this data set (Cheeseman et al., 2021). 

 

Model development: Assessment of potential biases 

We further considered the following potential sources of bias: varying effort by occasion, 

varying effort with space and potential for associated non-random sampling, and sex 

heterogeneity in capture probability in the wintering area leading to non-random 

sampling. We did not consider individual heterogeneity, effectively assuming that given 

sex and individual space use, all whales are otherwise equally likely to fluke up, migrate 

to the wintering area, and migrate at a time overlapping with sampling in the wintering 

area.  

Extensive variation in annual captures is evident in both time and space from 2019 to 

2021 (Fig. 2). Spatial variation in capture probability is a concern if the population does 

not mix completely over its range among capture occasions. We used photo-

identification data collected in the Central American and southern Mexico wintering area 

from 1988 to 2021 to test whether individuals are redistributed randomly or show 

consistency in spatial location among annual occasions (i.e., site fidelity at a finer scale 

than the extent of the population’s wintering area). Data were subset to individuals 

captured during more than one occasion (totaling 268 individuals, or 31% of all 

identified whales). Distance along the relatively linear coast of Central America and 

southern Mexico was approximated by latitude. To account for spatiotemporal variation 

in effort, we compared mean individual differences in capture latitude among occasions 

from 1,000 replicates each of true and permuted datasets, preserving the distribution of 

effort for each occasion. For each replicate, a true dataset was drawn from a complete 

daily-resolution dataset of captures, randomly subsampling at most one daily mean 

capture location per occasion per individual. A corresponding “test” dataset was created 
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by permuting individual identifications among all capture locations within each occasion. 

For each dataset, mean distance among annual capture locations was calculated for 

each individual, then averaged across individuals for an overall mean inter-occasion 

distance per dataset (see Appendix A for code). The resulting distributions of true and 

permuted distances among captures on different occasions show that the individual 

distances among captures on different occasions are less than expected at random in 

the wintering area, indicating some level of site fidelity within the population’s wintering 

area (Fig. 3). Results were similar when distances were calculated in kilometers from 

latitude and longitude. Whales may be identified en route to a destination further south, 

and much of the effort since 2014 has been in the northern portion of the wintering area 

in Southern Mexico, so we also ran the test constrained to data from 1988 to 2013, with 

similar results. 

To assess sex heterogeneity in capture probability in the wintering area for the 

CentAm/SMex-CA/OR/WA DIP, we compared the number of annual recaptures of 

males versus females over the full time series (1988-2021), using individuals that were 

genetically sexed from biopsies taken independently off the U.S. West Coast (Baker et 

al., 2013; Martien et al., 2020). Photo-identifications for quantifying annual captures 

were filtered for quality following the same procedure as for capture-recapture analysis 

(see “Data Filtering”). Genetic sex assignment followed either of two methods, using the 

Sry gene (Gilson et al., 1998) or the ZFX/ZFY 5’ exonuclease qPCR assay (Morin et al., 

2005). Where assigned sex from more than one biopsy for the same animal disagreed, 

the assigned sex from the more accurate Morin et al. (2005) technique was used. 

Biopsies were filtered to those for which certainty of associated tail fluke identification 

was positive or probable, including all biopsies collected before this field started being 

assigned. Males were recaptured an average of 0.81 times (±0.133 SE, n=68), and 

females an average of 0.24 times (±0.104 SE, n=34). We approximated the ratio of 

male to female recaptures, and thus capture probabilities, as a lognormal distribution 

with the median equal to the ratio of the means, 0.81/0.24 = 3.4, and coefficient of 

variation (CV) CVh estimated analytically from the CVs of male and female recapture 

frequencies, CVm and CVf, as  

. 

 

Model development: Specification and data preparation 

We specified a closed capture-recapture model using parameter-expanded data 

augmentation (Royle et al., 2007; Royle and Dorazio, 2012), and fitted it using a 

Bayesian analytical approach. Capture histories were aggregated to annual occasions, 

with or without a spatial dimension, as described below. The observed dataset was 

augmented by all-zero capture histories such that the total number of M potential 

individuals did not constrain the posterior for total existing individuals in preliminary 
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Markov Chain Monte Carlo (MCMC) simulations. A latent state of existence was 

estimated for each individual zi with probability ψ as  

, 

using a vague prior for ψ, 

. 

In a non-spatial model, realized abundance N is equal to total existing individuals Ʃzi, 
and expected abundance is ψM. 

Given evidence for some level of spatial fidelity and the spatially and temporally 

unbalanced sampling design (Fig. 2), we adapted a spatial capture-recapture (SCR) 

framework to account for individual space use (Efford 2004; Royle et al., 2013). Spatial 

capture-recapture models were originally developed for terrestrial wildlife studies 

employing camera trap arrays, and allow analysis of data with spatiotemporal 

heterogeneity in capture probability and individual variation in space use. We 

approximated space as one-dimensional, in degrees latitude, since the adjoining coast 

is roughly linear over the range of the population’s wintering area (Fig. 1). A latent 

‘center of activity’ covariate si, a latitude value, was estimated for each individual i, 
constrained to the model domain. Those individuals with an estimated si within specified 

population limits, which are potentially distinct from but contained within the model 

domain boundaries, were counted as part of the population (Fig. 4). The southern model 

domain boundary was defined as the accepted southern limit of the DIP, at the southern 

border of Panama (~7.25°N). The northern model domain boundary was defined as the 

northern border of the Mexican state of Colima (~19.2°N), halfway between the northern 

coastal border of Guerrero (~18°N) and the southern end of Bahía de Banderas, Jalisco 

(~20.4°N). We used a vague prior for si, corresponding to the model domain: 

. 

We accommodated uncertainty in the northern population limit, which may overlap with 

the Mexico DPS between the states of Guerrero and Nayarit (Taylor et al., 2021), by 

uniformly varying it from 18°N to 19.2°N in summarizing abundance from the posteriors. 

We explored model uncertainty in terms of sensitivity to the northern model domain 

boundary, and thus to the range of geographic activity centers from which animals are 

“allowed” to be sighted in Guerrero, by fitting models with alternate northern model 

domains bounded to the north instead at 18.6°N (approximate northern border of 

Michoacán state) and 20.4°N. Both of these alternate scenarios used a northern 

population limit of 18.6°N, resulting in an envelope of reasonable minimum and 

maximum population estimates that capture the extent of geographic uncertainty in the 

population’s distribution. 

To create spatial annual capture histories that we could fit without effort information, we 

discretized capture locations into eight “traps” based on breaks in capture locations for 
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the full 1988 to 2021 time series. Seven of these traps contained captures for the 2019 

to 2021 dataset (Fig. 2). Spatial captures within each trap were approximated as a point 

location, calculated as the mean latitude of all daily-level captures in that trap, so trap 

point locations correspond roughly to locations of focused field effort. Preliminary 

analyses showed abundance estimates were not sensitive to shifting cutoff points 

between traps or to increasing the number of traps. Individual capture probability by 

occasion and trap was calculated as 

, 

where Xj is the latitude of trap j, p0 is the capture probability intercept, which was 

allowed to vary by occasion k and trap j and given a uniform prior between zero and 

one, 

, 

and σ is the standard deviation of a univariate normal model of individual space usage, 

with vague prior 

. 

The model for the individual encounter events is 

, 

where yi,j,k is a binary variable recording whether individual i was observed in trap j and 

occasion k.  

Preliminary simulations indicated that this model tends to underestimate abundance in 

the parameter space of this analysis, with more accurate results returned by a model 

assuming a constant capture probability intercept across traps and occasions. However, 

preliminary abundance estimates from the two models were very similar, and the 

individual activity centers estimated in the model with constant capture probability were 

likely biased northward by the geographic gradient in effort (Table 2), so we used the 

model with space-and time-varying capture probability intercepts.  

A non-spatial model with time-varying capture probabilities (i.e., an Mt model; Otis et al., 

1978) with an otherwise similar specification using Bayesian parameter-expanded data 

augmentation was also fitted to the data for comparison to the results of the SCR model 

described above, providing additional information with respect to model uncertainty.  

Preliminary simulation results based on maximum likelihood estimation (MLE) 

suggested that a model incorporating individual capture heterogeneity (i.e., an Mh 

model; Otis et al., 1978), such as that caused by sex heterogeneity, would not produce 

reliable results in the parameter space of this analysis. Mh models explored included 

Chao’s, Poisson, and Darroch’s models. Directly modeling sex heterogeneity was also 

not a viable option, because little or no information on sex heterogeneity in capture 
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probability was captured within the sparse 2019-2021 dataset. Instead, sex 

heterogeneity was addressed by estimating bias from simulations (see Bias estimation). 

The posterior distribution for abundance was then multiplied by the estimated 

distribution for bias correction to obtain a corrected abundance posterior.  

Three MCMC chains were run for 22,500 iterations each after a burn-in of 2,500 

iterations for the non-spatial Mt model, and for 55,000 iterations each after a burn-in of 

5,000 iterations for the SCR model. MCMC chain mixing and stability and posterior 

sample size were evaluated by examining trace plots, running mean plots, and potential 

scale reduction factors (psrf) for each parameter. Trace plots of all parameters in each 

model showed good mixing of all three chains, running mean plots demonstrated stable 

results, and psrf was ≤1.01 for both point estimates and credible intervals. 

Posterior-predictive goodness-of-fit checks were performed as described in Royle et al. 

(2013), including for deviation of spatial activity centers from a uniform distribution, 

deviation of expected from observed number of captures per individual per trap, 

deviation of expected from observed number of captures per trap, and deviation of 

expected from observed number of captures per individual. A posterior predictive check 

was also performed for the non-spatial Mt model results to evaluate deviation of 

expected from observed number of captures per individual.  

Code for models and posterior predictive checks is provided in Appendix B.  

 

Bias estimation 

The magnitude of some important sources of bias had previously been estimated via 

simulation, and corresponding corrections estimated, for a three-year photo-

identification data set of North-Pacific-wide humpback whales fitted with a closed 

capture-recapture model (Barlow et al., 2011). These sources of bias include not 

sampling animals in their first year (one source of non-random sampling) and violation 

of the population closure assumption.  

To estimate the magnitude of bias expected from sex heterogeneity in capture 

probability, 5000 data sets were simulated based on abundance and occasion-specific 

capture probabilities estimated from the SCR and Mt models, respectively, as described 

above, an assumed sex ratio of 1:1, and a ratio of male to female capture probabilities 

set, in turn, to the 16th, 50th, and 84th percentiles of the lognormal distribution for the 

ratio estimate (see “Model development: Assessment of potential biases”). Male capture 

probabilities were set to those estimated from the Mt model. An Mt model was fitted to 

each dataset using MLE, and the mean ratio of estimated abundance to true abundance 

calculated. The three resulting estimates of bias were used to parameterize a normal 

distribution for estimation bias due to sex heterogeneity, with the mean equal to the bias 

estimated at the 50th percentile of the estimated distribution for sex heterogeneity, and 
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standard error calculated as the mean absolute difference between estimated bias at 

the 50th percentile and those at the 16th and 84th percentiles.  

The biases considered here are approximately additive (Barlow et al., 2011). A 

distribution of correction factors was parameterized as  

, 

where bopen+calf  and σb,open+calf (mean and standard error of combined bias due to births 

and deaths and excluding calves) were drawn from Barlow et al. (2011); and bh and σb,h 
(mean and standard error of estimated bias due to sex heterogeneity in capture 

probability) were estimated through simulation as described above. To obtain bias-

corrected estimates, random samples were drawn from this distribution for multiplication 

by the values in the posterior distributions for abundance from the SCR and Mt models. 

Data manipulation and filtering, visualization, simulations, and post-processing were 

conducted in R 3.6.2 (R Core Team, 2019), using the DBI, tidyverse, lubridate, coda, 

and mcmcplots packages (Plummer et al., 2006; Grolemund and Wickham, 2011; 

Curtis, 2015; R Special Interest Group on Databases (R-SIG-DB) et al., 2019; Wickham 

et al. 2019). Model fitting was implemented with NIMBLE for Bayesian estimation, using 

the nimble and nimbleEcology packages (de Valpine et al., 2017; Goldstein et al., 2021; 

de Valpine et al., 2021), and with Rcapture for MLE (Rivest and Baillargeon, 2019).  

 

Results and Discussion 

A total of 430 distinct individuals were included in the 2019 to 2021 dataset off Central 

America and southern Mexico, of which 38 were captured during two distinct occasions 

and one in three occasions, and 59 were captured in more than one trap (i.e., spatial 

recaptures), in some cases within an occasion.  

Two of the key abundance estimation biases anticipated in this analysis, along with 

associated uncertainty, were quantified by Barlow et al. (2011), with means of -10.5% 

for excluding animals in their first year and +5.2% for violating the population closure 

assumption. Barlow et al. (2011) based their simulations on sampling occasions 

separated by a maximum of 1.5 years, whereas the duration of our dataset is two years, 

which would lead to a greater positive bias due to births and deaths. If current vital rates 

in this DIP are markedly different from those simulated by Barlow et al. (2011) (0.96 

annual adult survival rate, 11% birth rate, and 0.85 semi-annual survival rate for new 

calves), that could also affect the resulting bias, with lower adult survival increasing it 

and lower birth rates and calf survivals decreasing it. Similarly, the -10.5% estimated 

mean bias from excluding first-year animals would be an overprediction of the negative 

bias if the current population had lower birth rates than simulated in Barlow et al. (2011). 

Calambokidis and Barlow (2020) found a population growth rate for U.S. West Coast 
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humpbacks that is commensurate with that of the SPLASH years (Calambokidis et al., 

2009), but we see evidence of lower growth rates for the CentAm/SMex-CA/OR/WA DIP 

(see below). Since the negative bias due to exclusion of first years is greater in 

magnitude than the opposing positive bias due to births and deaths, it would change 

faster with a change in birth rate. If the current population is growing more slowly due to 

a decrease in birth rate, the two combined biases would likely be less than the mean of 

-5.3% estimated in Barlow et al. (2011), making the current bias-corrected estimate a 

slight overestimate. Our simulations of unaccounted-for sex heterogeneity in capture 

probability, within the parameter space estimated from SCR and Mt models (1,100 total 

individuals; annual capture probabilities of 0.06, 0.06, and 0.23 in 2019, 2020, and 

2021, respectively), resulted in a mean estimation bias of -19.0% (CV=0.521). Summing 

these biases and their associated uncertainties, and inverting the difference from unity, 

produces a mean overall correction factor of 1.35 (CV=0.143). 

The base SCR model (northern model domain boundary at 19.2°N) resulted in a mean, 

bias-corrected, realized abundance estimate of 1,496 (CV=0.171) for the 

CentAm/SMex-CA/OR/WA DIP, with a 20th percentile of 1,284 (Fig. 5; Table 3). This 

estimate is somewhat lower than – though still above the 18th percentile of – that from 

the non-spatial Mt model, which resulted in a mean bias-corrected estimate of expected 

abundance of 1,804 (CV=0.191) (Table 3). Expected rather than realized abundance 

was calculated from the Mt model to take advantage of MCMC efficiencies in NIMBLE, 

but the two quantities were practically equivalent. The SCR estimate is only moderately 

sensitive to the location of the northern model domain boundary. To understand 

alternate model results, it is important to bear in mind that the dataset is the same 

throughout, limited to collections from Guerrero southward. Shifting the northern model 

domain boundary, and thus the limit of the potential activity center locations of animals 

in the dataset, southward to 18.6°N, at northern border of Michoacán state, increased 

the bias-corrected mean estimate slightly to 1,601 (CV=0.166), because it forced the 

spatial activity centers of observed animals to be concentrated in a smaller area, driving 

down the estimates of capture probability for the same number of captures. Shifting the 

northern model domain boundary northward to 20.4°N, at the transition to Bahía de 

Banderas, correspondingly drove up estimates of capture probability and lowered the 

bias-corrected mean abundance estimate to 1,313 (CV=0.167) (Table 3).  

The mean estimate of space use σ in the SCR model is 3.0 degrees latitude (CV=0.131; 

Fig. 5). This estimate is similar to the mean individual difference in capture latitude 

among occasions found in the diagnostic randomization test using all years of data (Fig. 

3). Note that this estimate cannot be translated to a distance in terms of kilometers, 

because it does not account for the corresponding change in longitude. Based on this 

estimate, traps are spaced at sufficient resolution (i.e., ≤ σ; Fig. 2) to expose all 

individuals in the population to sampling and minimize bias and imprecision due to trap 

spacing alone (Sollman et al., 2012; Royle et al., 2013).  
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The posterior predictive checks for deviation of expected from observed number of 

captures per individual did not detect unexplained individual heterogeneity in either the 

Mt or SCR model (0.45 and 0.77 probabilities, respectively, of deviation from expected 

being less in the observed data than in the posterior predicted datasets). However, 

goodness-of-fit tests have extremely limited power to detect unexplained individual 

heterogeneity in relatively sparse captures histories (e.g., White and Cooch, 2017). Of 

the remaining posterior predictive checks – for deviation from a uniform distribution of 

spatial activity centers, deviation of expected from observed number of captures per 

trap, and deviation of expected from observed number of captures per individual per 

trap – none of the resulting statistics suggested a lack of fit (probabilities of deviation 

from expected being less in the observed data than in the posterior predicted datasets 

of 0.43, 0.38, and 0.84).  

Given the goodness-of-fit results, the support for the importance of space in explaining 

capture probabilities of humpback whales in the CentAm/SMex-CA/OR/WA DIP in its 

wintering area, and the lower abundance estimate resulting from the SCR model, the 

estimate from the SCR model is the conservative choice. Sampling the full extent of the 

wintering area over multiple years, better characterizing the northern population limit for 

the wintering area, and obtaining effort data to be included as a covariate are crucial to 

obtaining a more robust abundance estimate for the CentAm/SMex-CA/OR/WA DIP. 

Limited evidence is available to assess whether the CentAm/SMex-CA/OR/WA DIP, 

which corresponds to the endangered Central America DPS, has been growing at the 

same rate as observed for total humpback whales off the U.S. West Coast, estimated 

by Calambokidis and Barlow (2020) at 8.2% per year. The abundance estimate 

provided here for the CentAm/SMex-CA/OR/WA DIP is not comparable to a previous 

estimate for the Central American DPS for the years 2004-2006 (755, CV= 0.242) 

(Wade, 2021), because the DIP now includes animals off southern Mexico. The current 

abundance estimate is nearly double that obtained 15 years earlier, and would 

correspond to an increase of 4.8% per year (analytical SD = 2.0%) if it were purely due 

to population growth. Given the inclusion of southern Mexico whales in the current 

estimate, the true growth rate of this population is likely lower, and substantially lower 

than that observed for total humpback whales off the U.S. West Coast over the same 

time period. Alternatively, a population growth rate can be derived by resummarizing the 

results of the SCR model to include only whales with activity centers south of 14.5°N in 

the abundance estimate. Comparing this resummarized and bias-corrected result to the 

Wade estimate, for which the main sources of bias may nearly cancel each other out 

(Wade 2021), gives an increase of 1.6% per year (SD = 2.0%).  

If the population growth rate for the CentAm/SMex-CA/OR/WA DIP is lower than that for 

U.S. West Coast humpbacks as a whole, we would expect a decrease over time in the 

proportion of Central America whales relative to Mexico whales in this feeding area. The 

current estimate for the CentAm/SMex-CA/OR/WA DIP (1,496, CV=0.171) represents 

30% of the most recent mark-recapture-based estimate for the U.S. West Coast (4,973, 
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CV=0.048), which was based on data from 2015-2018 (Calambokidis and Barlow, 2020; 

86 FR 58887, October 25, 2021). Previous estimates of this proportion, based on data 

from 2004-6, are indeed somewhat higher, at 42% in Wade (2021) and 55% (95% CI: 

27-67%) in Lizewski et al. (2021), though still within the confidence interval of the latter. 

Although Martien et al. (2020) found no evidence of a change in genetic composition for 

the U.S. West Coast between 1988-89, 2004, and 2018, their statistical power was 

extremely low for detecting a change in proportions of this magnitude (K. Martien, pers. 

comm., February 2, 2022).  

An estimate for the abundance of whales from the MMex-CA/OR/WA DIP in U.S. waters 

can be deduced from the remaining proportion of the U.S. West Coast estimate: 4,973 – 

1,496 = 3,477, with an analytical CV of 0.101. The 20th percentile of the corresponding 

lognormal distribution equals 3,179. The U.S. West Coast estimate was based on data 

from California and Oregon, but likely includes Washington animals due to interchange 

with that area (Calambokidis and Barlow, 2020).  

The West Coast estimate is not bias-corrected for births and deaths or exclusion of 

calves from the dataset. The magnitude of the bias due to exclusion of calves would be 

expected to be similar to that of -10.5% estimated by Barlow et al (2011). But since the 

three-year (four annual occasions) timespan of the West Coast estimate is double that 

considered in Barlow et al. (2011), the positive bias due to births and deaths would be 

substantially greater than +5.2%, largely cancelling out the former.  

 

Conclusions 

We present the first population estimate for the CentAm/SMex-CA/OR/WA DIP, with a 

best estimate of 1,496 (CV=0.171) and a 20th percentile of 1,284. We also found 

evidence that the growth rate for this population is considerably lower than that found 

for total humpback whales along the U.S. West Coast. Our analysis provides strong 

support for spatial fidelity of the CentAm/SMex-CA/OR/WA DIP in their wintering area, 

with important implications for sampling needs to obtain accurate population estimates. 

We also provide an estimate of the magnitude of sex heterogeneity in capture 

probabilities in the wintering area for this population, with annual male capture 

probability a factor of 3.4 (CV=0.46) times higher than that for females. Finally, a recent 

estimate for humpback whales off the U.S. West Coast allows us to subtract the 

estimate for the CentAm/SMex-CA/OR/WA DIP for a first estimate of the number of 

humpback whales from the MMex-CA/OR/WA DIP in U.S. waters, at 3,477 (CV=0.101). 
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Tables 

Table 1. Descriptions of quality levels used by Cascadia Research Collective to categorize photographs 

for identification of humpback whales. 

Quality level Description 

1 Best possible: sharp, well-lit, >75% view of target area, perpendicular to the 
photographer such that ridging is not distorted by angle or lighting 

2 Pretty good: has some flaw, either in exposure/sharpness, slightly off angle, 
but still usable for identification 

3 Fair: has flaws beyond a 2, exposure/sharpness compromised but still has 
parts in the photo that could be useful for identifying 

4 Poor: deemed unsuitable for confident matching due to any combination of 
limited portion of fluke visible, angle, lack of focus, lighting, or pixelation 
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Table 2. Summaries by country or state (region) of photo-identifications for 2019 to 2021 winter seasons (November of preceding year through April) in Central 

America and southern Mexico. Regions do not always correspond to “traps” (Fig. 2). Summaries include date range of sightings and number of unique 

identifications. Summaries for 2021 also include number of survey days. Unique identifications (IDs) for all locations do not equal the total of the regions since 

some individuals were seen in multiple regions. Totals after filtering for photo quality are also provided by year and by location. Abbreviations used are: CRC = 

Cascadia Research Collective, UABCS = Universidad Autónoma de Baja California Sur, locs = locations. 

  

Region Organization 

Principal  

collaborators 

2019 2020 2021 2019-2021 

Date range Unique IDs Date range Unique IDs Date range 

No. Survey 

Days Unique IDs 

Unique IDs 

(Filtered) 

Guerrero, 

Mexico 

Whales of 

Guerrero 

K. Audley, A. García 

Chávez, R. Ramírez 

Barragán 

03-Jan-19 - 

09-Mar-19 
59 

09-Jan-20 - 

11-Mar-20 
53 

22-Dec-20 -

20-Mar-21 
46 123 207 

Oaxaca, 

Mexico 

UABCS,        

Univ. del Mar 

J. Urbán, P. Martínez, 

F. Villegas Zurita 
03-Feb-19 1 27-Feb-20 1 

10-Dec-20 -

26-Mar-21 
38 100 83 

Guatemala CRC E. Quintana-Rizzo 
27-Feb-19 -

08-Mar-19 
14 –1 – 

08-Feb-21 -

16-Feb-21 
8 17 24 

El Salvador 
Proy. Megaptera, 

Murdoch Univ. 

N. Ransome2, M. 

Castaneda 

13-Jan-19 - 

23-Feb-19 
9 

29-Jan-20 - 

04-Mar-20 
7 

01-Feb-21 - 

13-Mar-21 
41 47 39 

Nicaragua ELI-Scientific J. de Weerdt 02-Mar-19 2 
03-Jan-20 - 

04-Mar-20 
31 

03-Jan-21 - 

13-Apr-21 
46 82 97 

N and S 

Costa Rica 

Panacetacea, 

CRC 

F. Garita, J. 

Calambokidis, J. D. 

Palacios3 

– – 
16-Nov-19 - 

05-Dec-19 
2 

28-Dec-20 - 

28-Mar-21 
57 47 41 

Panama Panacetacea 
K. Rasmussen, B. 

Pérez 
– – – – 

04-Feb-21 - 

19-Feb-21 
9 5 5 

All Locs      84  90  244 361  

Filtered,  

All Locs 
   75  84   311 430 

 

 
1 Scheduled field work was cancelled due to the start of the global pandemic. 
2 2019 IDS came from David Alfaro at Asociación Océano and Jose Baires. 
3 2020 IDs came from Sierra Goodman. 



24 
 

Table 3. Summaries of bias-corrected abundance estimates for the CentAm/SMex-CA/OR/WA DIP from 

capture-recapture models. All models are closed-population models fitted to capture histories from 2019-

2021 off Central America and Southern Mexico. Base and alternate models are one-dimensional spatial 

capture-recapture models. Results are also shown for a non-spatial model with time-varying capture 

probabilities (Mt). Northern model domain boundary (MDB) and population limit(s) (PL) for each model 

are provided, along with the estimated mean abundance and coefficient of variation (CV). The base 

model estimate used for further inference is highlighted in bold. 

Model Northern MDB 

(Latitude) 

Northern PL 
(Latitude) 

Mean CV (%) 

Base 19.2 18°N - 19.2°N 1,496 17.1 

Northern alternate MDB 20.4 18.6°N 1,313 16.7 

Southern alternate MDB 18.6 18.6°N 1,601 16.6 

Non-spatial Mt – – 1,804 19.1 
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Figures 

 

Figure 1. Map of Central American and southern Mexican Pacific coast, along which lies the wintering 

area of the CentAm/SMex-CA/OR/WA DIP of humpback whales. Black arrows indicate northern and 

southern population limits used in the base one-dimensional spatial capture-recapture model (i.e., limits 

for estimated activity centers of animals included in population), with the southern limit at 7.25°N and the 

range of northern population limits indicated as an arc from 18°N to 19.2°N. Gray arrow indicates 

originally designated northern limit of Central America DPS at 14.5°N (northern border of Guatemala). 

Black dashed lines at 7.25°N and 19.2°N indicate model domain boundaries for base model (i.e., within 

which estimated centers of activity of whales in the dataset, whether included in the population or not, are 

allowed to occur). Gray dashed lines show alternate northern model domain boundaries, at 18.6°N and 

20.4°N. Abbreviations for Central American countries are Guat. = Guatemala, E.S. = El Salvador, Hon. = 

Honduras, Nic. = Nicaragua, C.R. = Costa Rica, Pan. = Panama. Abbreviations for subnational 

jurisdictions are BC = British Columbia, WA = Washington, OR = Oregon, CA = California, NA = Nayarit, 

JA = Jalisco, CL = Colima, MI = Michoacán, GR = Guerrero, OA = Oaxaca, CS = Chiapas.   
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Figure 2. Spatiotemporal distribution of photo-identifications of humpback whales in Central America and 

southern Mexico from the 2019 to 2021 winter seasons. Each unique individual captured during an 

annual occasion and in the range of latitudes constituting a “trap” (denoted by dashed gray lines) is 

represented by a dot at the mean latitude of its captures within that occasion-trap, binned by 0.05 

degrees latitude. Space is approximated by latitude, since the Pacific coast of Central America and 

southern Mexico is relatively straight. For reference, approximate latitudinal spans of Central American 

countries and southern Mexico are provided on the right-hand side in gray. Abbreviations are PA = 

Panama, CR = Costa Rica, NI = Nicaragua, SV = El Salvador, GT = Guatemala, S. MX = southern 

Mexico.  
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Figure 3. Results of permutation test for interannual spatial association within individuals. Histogram 
shows overall averaged mean distances per individual between annual capture locations (in degrees 
latitude), for true data and for permuted data, from 1000 replicates. For each replicate, a “true” dataset 
was drawn from a complete daily-resolution dataset of individual captures off Central America and 
southern Mexico from 1998 to 2021 by sampling one daily mean capture location per individual per 
occasion. A corresponding randomized dataset was created from this true dataset by permuting capture 
locations within occasion. For each true and each randomized dataset, mean distance among annual 
capture locations was calculated for each individual that was captured during more than one occasion, 
then averaged across individuals for the overall mean per dataset. 
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Figure 4. Conceptual diagram of model domain and population limits in one dimension (latitude). Model 

domain boundaries (MDB; black horizontal lines) must by definition include the population limits (PL; red 

horizontal lines) within them. For this analysis, the southern model domain boundary and southern 

population limit are the same, but the northern model domain boundary and northern population limit may 

differ. All estimated individual whale activity centers (dots) are restricted to the model domain. Those 

whales with activity centers within the population limits (activity centers indicated by red dots) are included 

in the abundance estimate. Probability of occurrence of an individual whale – and thus capture, if effort 

were constant in space – decreases exponentially with north-south distance from the activity center. If 

vertical whiskers to either side of each activity center represent the 95% probability density interval of 

occurrence locations for that individual, then that individual is most likely to be captured within “traps” 

(delineated by gray vertical bars to right) that overlap those whisker(s). Traps are ranges of latitudes 

within which the locations of all individual captures are approximated as the mean of those captures. An 

individual may be captured in more than one trap within an occasion.  
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Figure 5. Posterior probability densities for abundance N (upper panel) and space use parameter σ (lower 

panel) for the CentAm/SMex-CA/OR/WA DIP of humpback whales. Parameters were estimated from a 

closed, one-dimensional, spatial capture-recapture model fitted to spatially discretized annual capture 

histories in the wintering area off Central America and southern Mexico from 2019 to 2021. The 

abundance estimate includes a correction factor to account for the combined bias, estimated through 

simulation, from birth and deaths, omission of first-years from the data set, and sex heterogeneity in 

capture probability. A vertical dashed line shows the 20th percentile of the abundance posterior, which 

would serve as the minimum population estimate Nmin for calculation of Potential Biological Removal of 

this population under the U.S. Marine Mammal Protection Act. 
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Appendix A. R code for permutation test for individual spatial fidelity 

The following code performs a permutation test for non-randomness (fidelity) at the 
individual level in spatial location of captures among years. Test data sets are created 
by sampling a single record per individual per year. For each test data set, a permuted 
version is created by randomizing latitude within year. Then, for both permuted and 
unpermuted test data sets, the overall mean of mean distance per individual among 
years is calculated and the resulting distributions from 1000 replicates compared.  
 
# function to calculate distance metric  

# (overall mean of mean distance per individual among occasions) 

dist.ind.mean <- function(x) { 

  # filter multi-occasion individuals 

  my.iy <- x %>% filter(ny>1)                                     

  # calculate mean distance among within-individual captures 

  d.ind <- my.iy %>%  

    group_by(id) %>% tidyr::nest() %>%  

    # # using kilometers 

    # mutate(dists = purrr::map(data,  

    #                  ~geosphere::distm(data.frame(lon=.x$lon,          

    #                                               lat=.x$lat))/1000), 

    #        xdist = purrr::map(dists, function(x) mean(x[upper.tri(x)])))    

    # using degrees latitude 

    mutate(xdist = purrr::map(data, ~mean(dist(as.numeric(.x$lat))))) 

  return(mean(unlist(d.ind$xdist))) 

} 

 

# df.day is a data frame containing capture records at daily resolution, with  

# fields for individual identification number (id), annual occasion (occ),  

# latitude (lat), longitude (lon), and number of annual occasions in which 

# individual was captured (ny).  

 

# permutation test 

nrep <- 1000   # number of test replicates 

truth <- as.numeric(rep(NA, nrep)) 

test <- as.numeric(rep(NA, nrep)) 

for (i in 1:nrep) { 

  # create test data set by subsampling df.day 

  all.iy <- df.day %>%  

    group_by(id, occ) %>% sample_n(1) %>% ungroup() %>% arrange(occ, id)  

  truth[i] <- dist.ind.mean(all.iy) 

  # create permuted test data set 

  perm <- all.iy %>%  

    group_by(occ) %>%  

    mutate(r=sample(1:n()), id=id[r], ny=ny[r]) %>% 

    ungroup() %>% select(-r) 

  test[i] <- dist.ind.mean(perm) 

} 

rm(all.iy, perm, i) 

 

# calculate proportion of true test statistics that are less than their  

# paired permuted counterparts 

sum(truth<test)/nrep 
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Appendix B. NIMBLE and R code for models and posterior predictive checks 

1) One-dimensional SCR model, where y is augmented with all-zero histories 
 
Model code: 
 
SCR0pjk.1D.code <- nimbleCode({ 

  for (j in 1:J) { 

    for (k in 1:K) { 

      p0[j,k] ~ dunif(0, 1)    # baseline encounter probability 

    } 

  } 

  sigma ~ dunif(0, 50)    # scale parameter of encounter function 

  psi ~ dunif(0, 1)    # DA parameter: E(N) = M*psi 

   

  for(i in 1:M) { 

    z[i] ~ dbern(psi)    # Is individual real? 

    s[i] ~ dunif(ylim[1], ylim[2])   # 1D spatial coordinate 

 

    for(j in 1:J) { 

      # occasion-varying capture probabilities for individual i at trap j 

      p[i,j,1:K] <- p0[j,1:K] * exp(-(s[i] - X[j])^2/(2*sigma^2))     

      y[i,j,1:K] ~ dOcc_v(z[i], p[i,j,1:K], len = K)   

    } 

  } 

   

  N <- sum(z[1:M])    # realized abundance 

  EN <- psi*M 

}) 

 

 

R code for goodness-of-fit (niter is total number of MCMC samples): 
 
constants <- list(X = X, K = K, M = M, J = J, ylim = ylim) 

m.scr01d <- nimbleModel(SCR0pjk.1D.code, constants = constants, data = list(y 

= y)) 

cm.scr01d <- compileNimble(m.scr01d) 

dataNodes <- m.scr01d$getNodeNames(dataOnly = TRUE, returnScalarComponents = 

TRUE) 

parentNodes <- m.scr01d$getParents(dataNodes, stochOnly = TRUE) 

simNodes <- m.scr01d$getDependencies(parentNodes, self = FALSE)    

vars <- parentNodes 

nsbin <- 10 

binlims <- ylim[1] + (0:nsbin)*((ylim[2]-ylim[1])/nsbin) 

ppc <- data.frame(Ts = rep(NA, niter), Tsnew = rep(NA, niter),  

                  Tij = rep(NA, niter), Tijnew = rep(NA, niter), 

                  Ti = rep(NA, niter), Tinew = rep(NA, niter), 

                  Tj = rep(NA, niter), Tjnew = rep(NA, niter)) 

for(ni in 1:niter) { 

  values(cm.scr01d, vars) <- samples[ni, ] 

  cm.scr01d$simulate(simNodes, includeData = TRUE) 

  ysimflat <- values(cm.scr01d, dataNodes) 

  ysim <- aperm(array(ysimflat, dim=c(K, J, M)), perm=c(3,2,1)) 

  pflat <- values(cm.scr01d, "p")    

  p <- array(pflat, dim=c(M,J,K)) 
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  s <- values(cm.scr01d, "s") 

  z <- values(cm.scr01d, "z") 

  sran <- runif(M, ylim[1], ylim[2]) 

  # Goodness of fit components 

  ## spatial randomness 

  sbin <- rep(NA, nsbin) 

  snewbin <- rep(NA, nsbin) 

  for (b in 1:nsbin) { 

   sbin[b] <- sum((z > 0) & (s > binlims[b]) & (s <= binlims[b+1])) 

   snewbin[b] <- sum((z > 0) & (sran > binlims[b]) & (sran <= binlims[b+1])) 

  } 

  esbin <- sum(z)/nsbin 

  ppc$Ts[ni] <- sum(pow(sqrt(sbin[1:nsbin]) - sqrt(esbin), 2)) 

  ppc$Tsnew[ni] <- sum(pow(sqrt(snewbin[1:nsbin]) - sqrt(esbin), 2)) 

  ## observations 

  esumyij <- matrix(NA, nrow=M, ncol=J) 

  sumyij <- matrix(NA, nrow=M, ncol=J) 

  sumynewij <- matrix(NA, nrow=M, ncol=J) 

  for (j in 1:J) { 

    for (i in 1:M) { 

      esumyij[i,j] <- sum(z[i]*p[i,j,]) 

      sumyij[i,j] <- sum(y[i,j,]) 

      sumynewij[i,j] <- sum(ysim[i,j,]) 

    } 

  } 

  esumyj <- colSums(esumyij) 

  sumyj <- colSums(sumyij) 

  sumynewj <- colSums(sumynewij) 

  esumyi <- rowSums(esumyij) 

  sumyi <- rowSums(sumyij) 

  sumynewi <- rowSums(sumynewij) 

  ppc$Tij[ni] <- sum(pow(sqrt(sumyij) - sqrt(esumyij), 2)) 

  ppc$Tijnew[ni] <- sum(pow(sqrt(sumynewij) - sqrt(esumyij), 2)) 

  ppc$Tj[ni] <- sum(pow(sqrt(sumyj) - sqrt(esumyj), 2)) 

  ppc$Tjnew[ni] <- sum(pow(sqrt(sumynewj) - sqrt(esumyj), 2)) 

  ppc$Ti[ni] <- sum(pow(sqrt(sumyi) - sqrt(esumyi), 2)) 

  ppc$Tinew[ni] <- sum(pow(sqrt(sumynewi) - sqrt(esumyi), 2)) 

} 

sum(ppc$Ts < ppc$Tsnew)/niter 

sum(ppc$Tij < ppc$Tijnew)/niter 

sum(ppc$Ti < ppc$Tinew)/niter 

sum(ppc$Tj < ppc$Tjnew)/niter 

 

 

2) Mt model (non-spatial closed model with time-varying capture probability), where y is 
augmented with all-zero histories 
 
Model code: 
 
nimbleCode({ 

  psi ~ dunif(0, 1)     # DA parameter: E(N) = M*psi 

   

  for (k in 1:K) { 

    p[k] ~ dunif(0, 1)      # baseline encounter probability 

  } 
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  for(i in 1:M) { 

    y[i,1:K] ~ dOcc_v(psi, p[1:K], len = K) 

    ynew[i,1:K] ~ dOcc_v(psi, p[1:K], len = K)   # posterior predictive data 

    sumynewi[i] <- sum(ynew[i,1:K])    

    # constant sumyi calculated outside MCMC 

  } 

   

  # GOF metrics 

  ## individual heterogeneity 

  Tinew <- var(sumynewi[1:M])/mean(sumynewi[1:M])    

  # constant Ti calculated outside mcmc  

  ## temporal heterogeneity 

  for (k in 1:K) {  

    sumyk[k] <- sum(y[1:M,k]) 

    sumynewk[k] <- sum(ynew[1:M,k]) 

    esumyk[k] <- p[k] * psi * M 

  } 

  Tk <- sum(pow(sqrt(sumyk[1:K]) - sqrt(esumyk[1:K]), 2)) 

  Tknew <- sum(pow(sqrt(sumynewk[1:K]) - sqrt(esumyk[1:K]), 2)) 

   

  EN <- psi*M 

}) 

 

 

R code for goodness-of-fit: 
 
sumyi <- c(rowSums(y), rep(0, M-dim(y)[1])) 

Ti <- var(sumyi)/mean(sumyi) 

# excess temporal heterogeneity? 

sum(Tk > Tknew)/length(Tk) 

# excess individual heterogeneity? 

sum(Ti > Tinew)/length(Ti) 
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