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INTRODUCTION 

Model f i s h i n g  nets  have been used f o r  many years as an inexpensive a i d  t o  
improving var ious types o f  f i s h i n g  gear. The most common and successful 
model s are those o f  t r a w l  s t h a t  can be observed i n  f l  ume tanks, thus a1 lowing 
changes i n  r i g g i n g  and c o n s t r u c t i o n  t o  be t e s t e d  w i thout  going t o  sea. 
f i r s t  f lume tank was b u i l t  a t  Boulogne-sur-Mer, France i n  1967. 
l a r g e r  flume tank was b u i l t  i n  Lor ien t ,  France i n  1978. 
A u t h o r i t y  ( H u l l ,  England) b u i l t  a l a r g e  f lume tank i n  1976 t h a t  can 
accommodate models o f  l a r g e  pe lag ic  t r a w l s  a t  towing speeds up t o  13.5 knots  
( Noel , 1980). 

Model t e s t i n g  i n  these flume tanks has g r e a t l y  increased the under- 
standing o f  t r a w l  dynamics and has l e d  t o  subs tan t ia l  ref inements i n  modeling 
techniques. A d d i t i o n a l l y ,  i t  has shown t h a t  model s tud ies  o f  n e t  dynamics can 
be done a t  a f r a c t i o n  o f  the  c o s t  o f  us ing f u l l - s i z e d  commercial f i s h i n g  
gear. Not o n l y  are the cos ts  o f  n e t  mater ia l ,  l a b o r  and operat ions lower, t h e  
t ime requ i red  t o  modify a model i s  considerably l e s s  than f o r  the f u l l - s i z e  
gear. When c e r t a i n  modeling r u l e s  a re  fo l lowed and the models are scaled up 
t o  f u l l  s ize,  accuracy o f  performance p r e d i c t i o n  can be maintained (Wileman, 
1980) 

The 
A second, 

The White F i s h  

* 

The f i r s t  model purse-seine s tud ies c a r r i e d  o u t  by the  Nat ional  Marine 
F isher ies  Service ( then the Bureau o f  Commercial F i s h e r i e s )  were d i r e c t e d  
towards improving the  o v e r a l l  e f f i c i e n c y  o f  t h e  purse seine. 
Green (1968) b u i l t  a 1:25 scale model o f  a 425 fathom-long, seven-strip-deep 
(a  standard n e t  s t r i p  i n  U. S. tuna purse seines i s  100 t o  120 fathoms long by 
100, 4 l /$ - inch  meshes deep) tuna seine us ing t h e  modeling r u l e s  o f  Dickson 
(1959). Ideal  m a t e r i a l s  f o r  model c o n s t r u c t i o n  were n o t  ava i lab le ,  and the 
weight o f  t h e  model ' s  l e a d l i n e  and web was reduced a t  a scale l e s s  than 
1:25. The authors were ab le  t o  g e t  r e l i a b l e  r e s u l t s ,  however, by f u l l y  
t e s t i n g  the  bas ic  design and then modi fy ing the  model and r e t e s t i n g .  Thei r  
concl usions, based on performance comparisons o f  "before" and " a f t e r "  t e s t s ,  
were: 1) a lower c o e f f i c i e n t  o f  hang-in (K ) increased s i n k i n g  speed and 
maintained the  maximum surface area f o r  a fonger t ime, 2) a longer  l e a d l i n e  
( than c o r k l i n e )  increased the  s i n k i n g  speed, 3) tapered ends saved webbing 
w i thout  impa i r ing  f i s h i n g  depth, and 4) deeper ne ts  maintained t h e i r  shape 

Ben-Yami and 
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longer.  These model s tud ies  l e d  t o  the  design o f  the  " h y b r i d  seine'' (Green e t  
al., 1971) which was eas ie r  t o  handle, sank f a s t e r ,  used l e s s  webbing, and had 
a grea ter  sur face area f o r  a longer  t ime than d i d  t h e  more convent ional  nets  
o f  t h a t  t ime. 

A model purse seine designed f o r  s tud ies  r e l a t i n g  t o  t h e  tuna-dolphin 
problem was b u i l t  by Gary Lover ich under t h e  d i r e c t i o n  o f  Richard McNeely i n  
1972 a t  t h e  Northwest and Alaska F i s h e r i e s  Center (NWAFC). Th is  model was 
designed from t h e  same tuna se i  ne used by Ben-Yami and Green (1968). 
was able t o  l o c a t e  more s u i t a b l e  m a t e r i a l s  t h a t  a l lowed improved accuracy i n  
scal  i ng . 

Lover ich 

The McNeely-Loverich model was t h e  scal  ed equi Val e n t  o f  n i  ne s t r i p s  deep 
and had a mid-depth purse l i n e  i n s t a l l e d  throughout i t s  l e n g t h  t o  t e s t  t h e  
f e a s i b i l i t y  o f  double purs ing  t o  separate the  tuna from t h e  dolphins.  
w i t h  t h i s  model showed a mid-depth purse l i n e  t o  be i m p r a c t i c a l  and saved 
considerable t ime and money t h a t  might  have been expended t e s t i n g  t h e  idea on 
a commercial s e i  ner. 
general purse seine dynamics; however, t h e  model was n o t  used t o  study the  
backdown maneuver as a method o f  do lph in release. 

Tests 

These e a r l y  t e s t s  a1 so provided Val uabl e in fo rmat ion  on 

A second model was b u i l t  a t  the  NWAFC i n  t h e  spr ing  o f  1973. This was a 
1:50 scale model o f  a newly designed "Large Volume Net" (LVN) scheduled f o r  
c o n s t r u c t i o n  by NMFS i n  t h e  f a l l  o f  t h a t  year. 
model were 1 )  increased depth (17 s t r i p s )  t o  prevent pre-backdown n e t  
col lapse, p rov ide  grea ter  surface area and increase purs ing  speed and 2) 
tapered ends t o  reduce excess webbing and at tendant  gear mal funct ions.  The 
model was s e t  th ree  t imes t o  evaluate general s i n k i n g  and purs ing  
c h a r a c t e r i s t i c s .  It performed we l l  i n  these t e s t s  b u t  appeared t o  s ink too  
s lowly  due t o  greater-than-expected webbing res is tance.  

The two main fea tures  o f  t h e  

A l l  o f  t h e  s tud ies  i n v o l v i n g  model purse seines descr ibed thus f a r  d e a l t  
w i t h  the  dynamics o f  s e t t i n g ,  s i n k i n g  speeds, hang-in c o e f f i c i e n t s  and 
pursing. None has examined t h e  process o f  r e l e a s i n g  dolph ins by 
backing-down. The backdown procedure (Coe and Souza 1972) i s  t h e  pr imary 
means o f  r e l e a s i n g  captured dolph ins i n  t h e  eastern t r o p i c a l  P a c i f i c  tuna 
f i s h e r y .  It i s  a l s o  t h i s  phase i n  the  operat ions t h a t  most f r e q u e n t l y  r e s u l t s  
i n  dol  ph i  n mor ta l  i ty. 

The purpose o f  t h i s  study was t o  evaluate the usefulness o f  model purse 
O f  seines i n  the  design and t e s t i n g  o f  dolphin-rescue gear and procedures. 

pr imary i n t e r e s t  was the  behavior o f  t h e  models dur ing  normal and mod i f ied  
backdown procedures. 
such as webbing becoming tangled i n  t h e  purse r ings ,  were a l s o  examined. 

The e f f e c t s  on performance o f  var ious gear malfunct ions,  

MODEL SCALING FACTORS 

The two models used i n  t h i s  study were designed t o  be s e t  from a two-man 
i n f l a t a b l e  r a f t  i n  a l a r g e  swimming pool. They were both scaled us ing the  

lUnpubl ished working notes o f  McNeely and Loverich. 
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modeling r u l e s  of Dickson (1959) and Kawakami (1964). 

The f i r s t  model (F igure  l a )  i s  a standard rec tangu lar  n e t  fashioned a f t e r  
an e a r l y  design descr ibed by McNeely (1961). It i s  a 1:25 scale model o f  a 
425-fathom, seven-st r ip  seine. Two a d d i t i o n a l  s t r i p s  (equ iva len t )  were added 
t o  t h e  model t o  accommodate s tud ies using two purse l i n e s .  The model i s  31.1 
meters long, s inks  t o  about th ree  meters and sets  i n  a 9.8-meter c i r c l e .  
Physical parameters f o r  both the f u l l - s i z e d  and model vers ions are shown i n  
Table 1. 

The second model, the  Large Volume Net (LVN), was b u i l t  t o  t e s t  the  
hydrodynamic performance o f  a f u l l - s i z e d  prototype. 
long, s inks t o  about 3.4 meters and sets  i n  a 7.0-meter c i r c l e .  
parameters o f  t h i s  LVN model are a l s o  shown i n  Table 1. 

The model i s  22 meters 
The phys ica l  

The modeling theory used f o r  s c a l i n g  these nets  was based on main ta in ing  
Froude' s and Reynolds' number equiva lent .  Froude' s and Reynolds' numbers as 
we l l  as general s c a l i n g  theory are descr ibed by Dickson (1961), Baranov 
( 19481, Fridman ( 1964) and Kawakami ( 1959 and 1964). Keeping Froude' s number 
constant  mainta ins a constant  f l o t a t i o n - t o - d r a g  r a t i o  by reducing the v e l o c i t y  
(and t ime scale)  by t h e  square r o o t  o f  t h e  1 i n e a r  scale (Dickson, 1961). This 
a1 so insures  t h a t  the  fo rces  o f  g r a v i t y  and i n e r t i a  a re  scaled equal ly .  
order  t o  ma in ta in  p rec ise  dynamic and f r i c t i o n a l  fo rces  between the  model and 
f u l l - s i z e d  gear, the  Reynolds' numbers o f  both must a l s o  be the same. 
cannot always be achieved i n  p rac t ice ,  and some d i f f e r e n c e s  i n  water f l o w  
p a t t e r n s  and drag c o e f f i c i e n t s  u s u a l l y  have t o  be accepted. 
a t  which t h e  purse seines operate (as opposed t o  t r a w l s )  tend t o  minimize the  
e f f e c t s  o f  these d i f fe rences .  

I n  

This  

The slow speeds 

Modeling r u l e s  used by the  b u i l d e r s  o f  these models t o  ensure a constant  
f l o t a t i o n - t o - d r a g  r a t i o  were: 

1. A l l  l eng ths  were reduced by S, 
2. Speed and t imes were reduced by S, 
3. Weights were reduced by S3, 

where S i s  t h e  s c a l i n g  f a c t o r .  

Geometric s i m i l a r i t y  between the models and the  f u l l - s i z e d  gear was 
achieved by reducing a l l  lengths by the  l i n e a r  sca le and main ta in ing  a l l  hang- 
i n  r a t e s  and tapers. Reduction i n  mesh s ize  was based on the  amount o f  
blockage ( o r  water res is tance)  o f f e r e d  by the  web t o  the  water f l o w  and w$S 
l e s s  than the  l i n e a r  scale. The mesh on the 1:25 standard model was scaled t o  
o n l y  one-seventh o f  t h e  o r i g i n a l  and t h a t  on the  LVN model t o  o n l y  one-eighth 
o f  i t s  o r i g i n a l  f u l l - s i z e d  design. This technique i s  v a l i d  when the  sur face 
areas o f  the  twines are reduced a t  equal r a t i o s .  
mesh-length r a t i o s  f o r  the  standard model and i t s  o r i g i n a l  were 0.0216 and 
0.0296, respec t ive ly ,  wh i le  those o f  the LVN model and i t s  f u l l - s i z e d  design 
were 0.017 and 0.011. While these r a t i o s  a re  almost equal, researchers a t  the 
White F i s h  A u t h o r i t y  i n  England suggest us ing the  twine-diameter r a t i o  (TDR) 
t o  determine mesh s i z e  f o r  model nets  (Wileman, 1976). Here the  model mesh 
s ize  i s  d i r e c t l y  p ropor t iona l  t o  the  r a t i o  o f  tw ine  diameters. 

The twine-diameter-to- 
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- Dm 

Df 

- -  twine d ia .  model 
twine d i a .  fu l l  size 

TDR = 

and i n  the case of the standard 1:25 model 

The mesh size is  then reduced by 1/5, or  to  104.82 mn x 0.21 = 22.0 mm. 
The mesh size  ind ica ted  for this model was somewhat larger  t h a n  the 15.2 mm 
(0.60") used. Consequently one would expect a l i t t l e  more blockage and 
therefore more resistance to  water flow. 

The LVN model incorporated a TDR of 0.081, ind ica t ing  a preferred mesh 
size of 8.7 mm (0.344 inches). The 12.7 mm ( 1 / 2  i n c h )  mesh size used was 
therefore too large and allowed less  drag than i f  scaled precisely. 

The f l ex ib i l i t y ,  e l a s t i c i ty  and s t i f fness  of the selected materials used 
i n  constructing model s are  a1 so important factors i n  the hydrodynamic behavior 
of model nets. Wileman (1980) doubts  tha t  e l a s t i c i ty  and s t i f fness  scale down 
properly ( a t  least  i n  trawl s )  when forces are reduced by the cube of the 
scale. These d i f f i cu l t i e s  and uncertainties i n  b u i l d i n g  and testing the model 
nets have certainly introduced some bias  i n  performance. These biases, 
however, appeared minimal dur ing  most aspects of the study. 

OPERATIONAL AND EXPERIMENTAL PROCEDURES 

Prel iminary work i ncl uded determining optimum operating and experimental 
procedures for  the setting, purs ing  and backing-down operations. The models 
were set from a two-man inf la table  r a f t  f i t t e d  w i t h  a small electric t ro l l ing  
motor, keel, r i n g  stripper, winch ,  and net box (Figure 2 ) .  During the early 
t r i a l s ,  the techniques for  sett ing,  p u r s i n g  and backing down were established, 
and, w i t h  practice, a single r a f t  operator could perform these functions 
smoothly. The sets were in i t ia ted  by holding the bow end of the model while 
the r a f t  completed i t s  c i rc le .  Se t t i ng  speed was controlled a t  0.5 meters per 
second (about  one m i n u t e  t o  complete the c i rc le) .  

The purse winch  was made by connecting two level-wind-equipped fishing 
reels together so tha t  both  ends of the purse line could be pu l l ed  a t  equal 

*Standard 4 1/8 inch mesh. 
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speeds. 
stripper, the raft  was pulled in to  shallow water by hand. 
purse cable were "rolled", or  pulled i n  by hand and stacked i n t o  the net box, 
until the stern tie-down p o i n t  for backdown was reached. 
was then tied down under the ring stripper, and three bow corkline bunches 
were pulled. T h i s  net-roll procedure represents a complete interruption in 
the retrieval process and was necessary because scaling of the vessel I s  h u l l  
and skiff drag was beyond the scope of this study and because observation 
d u r i n g  repeated backdown t r ia ls  was more easily accomplished i n  shallow 
water. 
pre-backdown conditions and net configurations. 

Once the net was pursed, and the purse rings placed on the r i n g  
Here the net and 

The net's stern side 

Multiple-backdown tests were then carried o u t  under varying 

Applying these procedures t o  the two model s a1 1 owed for pre-backdown 
observations of setting characteristics, s i n k i n g  rates, pursing dynamics, 
enclosed surface area and volume seined. 
such as "stern sway" (Hol t s  e t  a1 ., 1979; Coe and Butler, 19801, surface and 
subsurface canopies, channel collapse, changes i n  the radius of the backdown 
arc and t i e  down poin t  locations were of primary interest. 

Various aspects of backdown dynamics 

These studies were carried out  i n  the summer of 1980 a t  the swimming 
pools of the University of California, San Diego (UCSD) and a t  the General 
Atomic Company employees' recreational pool. Both  swimming pools were 
available for only one four-hour session once a week. 
allow time for setting up support and recording equipment necessary t o  
standardize procedures and measure any changes i n  the model s '  behavior between 
t r ia ls .  

T h i s  schedule did not  

Consequently our results are largely qual i tative. 

OBSERVATIONS OF PURSE SEINE DYNAMICS 

Si n k i  ng Speed 

The objective of the f i r s t  two sessions was t o  establish the operational 
and experimental procedures as well as t o  work o u t  any unforeseen problems. 
Sinking speeds were measured during four subsequent sessions. 

B o t h  orientation sets were made w i t h  the standard model. I t  sank very 
slowly and unevenly during the f i r s t  set because the webbing was dry and 
contained numerous air  spaces. Wetting the model s just  prior t o  setting 
el iminated this problem on subsequent tr ials.  

The purse cable was always stacked w i t h  the model nets and d i d  not  unwind  
(under tension) from the winch  during setting as i s  the case during actual 
fishing conditions. This may have a1 lowed the model s t o  sink t o  a greater 
extent t h a n  the full-sized gear, since tension on the purse cable h o l d s  up the 
leadline and prevents f u l l  extension of  the web. 

The standard model averaged 32.3 seconds t o  reach i t s  maximum depth i n  
four trial sets as measured a t  the half-net marker (15.6 m ) .  Times were 
recorded w i t h  a stopwatch as the leadline sank past submerged markers a t  one, 
two and two-and-a-half meters. 



6 

t r i a l  
1 2 3 4 X 

Depth Seconds 
l m  11 9 9 - 9.7 
2m 23 20 25 17 21.3 

2.5m 28 30 35 36 32.3 

Scal ing these data back t o  the f u l l - s i z e d  gear g ives a s i n k i n g  t ime o f  
2.7 minutes t o  reach a depth o f  34.2 fathoms, o r  12.6 fathoms per minute 
(fm/min). Th is  i s  much too  f a s t  f o r  f u l l - s i z e d  gear o f  comparable lengths  and 
depths. 
our model may have sunk near ly  th ree  t imes too f a s t .  Ploeger3 ( 1973) found a 
1 0 - s t r i p  n e t  t o  s ink  a t  2.9 fm/min over the  f i r s t  f i v e  minutes o f  s e t t i n g .  
Hester (1961) measured the  s i n k i n g  r a t e  o f  a seven-st r ip  n e t  a t  about 4.5 
fm/min fo r  t h e  f i r s t  5 minutes. Green e t  a1 ., (1971) found 5 d i f f e r e n t  tuna 
purse seines had an average s i n k i n g  speed o f  5.7 fm/min over the  f i r s t  5 
minutes. The f a s t e s t ,  t h e i r  1 0 - s t r i p  h y b r i d  nets, sank a t  6.6 fm/min. 
Be l tes tad  (1980) repor ted a s i n k i n g  speed o f  12.4 fm/min (22.7 m/min) i n  an 
experimental purse seine made o f  s ix -s ided meshes ("hex mesh"). 

Publ ished s i n k i n g  speeds f o r  nets  w i t h  seven t o  ten  s t r i p s  i n d i c a t e  

We were unable t o  o b t a i n  s i n k i n g  r a t e s  on t h e  LVN model because i t s  
webbing became entangled dur ing  each o f  the  t r i a l s  and consequently d i d  n o t  
s ink  un i fo rmly .  

Pur s i  ng 

Pursing o f  t h e  models began a f t e r  connect ion o f  the  purse cable ends t o  
Dur ing t h i s  time, the standard model sank t o  i t s  maximum depth 

Both ends were p u l l e d  evenly u n t i l  the  purse r i n g s  came up nex t  
The standard model was pursed i n  f o u r  t o  f i v e  minutes; t h i s  i s  

the  "winch." 
and would touch t h e  bottom o f  the  pool i f  t h e  connect ion t o  the winch was n o t  
made r a p i d l y .  
t o  the  r a f t .  
comparable t o  purs ing  t imes o f  the  o l d e r  and smal ler  tuna se iners w i t h  slower 
deck machinery and 400 t o  450-fathom nets.  
was 435 fathoms l o n g  and took an average o f  about 24 minutes t o  purse ( f o r  the  
model, 24 min t S = 4.8 minutes).  

The seine used by Hester (1961) 

Three sets  were made w i t h  the 1:50 scale model o f  the  Large-Volume Net. 
On the  f i r s t  o f  these sets, the l e a d l i n e  sank t o  the  bottom o f  the  pool and 
the  r i n g s  and b r i d l e s  were dragged across t h e  bottom as i t  was pursed. The 
nex t  t w o  sets  were o r i e n t e d  so t h a t  the  model 's deeper center  sec t ion  was i n  
the deep end o f  the pool and the  tapered ends fo l lowed up t h e  s lop ing  bottom 
t o  t h e  shal low end. This  al lowed purs ing w i thout  dragging on the  pool 

3P10eger, J. W. 
Bathykymograph Sumnary NMFS Cruise No. 51. S o u t h w m s h w e n t e r ,  La 
J o l l a ,  C a l i f o r n i a ,  26 p. 

1973. Cruise r e p o r t  o f  the M/V John F. Kennedy 
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bottom. This model was pursed i n  two t o  th ree  minutes, represent ing  the t ime 
f o r  a tuna purse se iner  t o  c lose  a 600-fathom net.  As purs ing  proceeded w i t h  
bo th  models, t he  r i n g s  p u l l e d  i n  smoothly and evenly and appeared t o  f u n c t i o n  
as those observed a t  sea.4 The bow and s t e r n  bends t h a t  normal ly  form around 
the  se iner  ( o r  r a f t  i n  our study) on ly  p a r t i a l l y  developed du r ing  purs ing,  
because we made no at tempt  t o  s imulate the  drag o f  the vessel ' s  h u l l  and 
s k i f f - p u l l i n g  c h a r a c t e r i s t i c s .  
the  r a f t  s l i g h t l y  i n t o  the  net ,  b u t  no s tud ies  were conducted concerning t h i s  
aspect o f  t he  operat ion.  

The bends cou ld  be e a s i l y  created by pushing 

The c o r k l i n e  on bo th  models co l lapsed q u i t e  bad ly  du r ing  the f i n a l  stages 

This  
The LVN 

o f  pursing. The c o r k l i n e  o f  the  standard model completely col lapsed, 
e l  im ina t i ng  a1 1 open sur face area each t ime the  r i n g s  came o u t  o f  water. 
was, t o  a l a r g e  degree, due t o  i t s  h igh  length- to-depth r a t i o  (1l:l).  
model had a much lower length- to-depth r a t i o  ( 7 : l )  and remained no t i ceab ly  
more open. 

The o v e r a l l  opera t ion  from s e t t i n g  t o  r ings-up proceeded smoothly and was 
judged a good s imu la t i on  o f  actua l  f i s h i n g  dynamics i n  both models. A f t e r  
r ings-up, t h e  model ( s )  and r a f t  were moved i n t o  the  shal low end o f  t he  pool , 
where the  s t e r n - h a l f  o f  the  n e t  was stacked i n t o  the  n e t  box and then t i e d  
down a t  the appropr ia te  tie-down po in t .  The th ree  bow c o r k l i n e  bunches were 
a l so  p u l l e d  i n  a t  t h i s  t ime and at tached t o  the  r a f t ' s  p o r t  bow. 

Backdown Observations 

P r i o r  t o  each backdown sequence, the  r a f t  was pos i t i oned  i n  the  corner  o f  
the  shal low end o f  the  pool so t h a t  i t  cou ld  s imulate a long, gen t l y  a rc ing  
backdown path t o  the pool I s  deep end. The c o r k l i n e  was opened by hand and the  
webbing al lowed t o  s ink p r i o r  t o  i n i t i a t i n g  each backdown sequence. 

The webbing under the  bow c o r k l i n e  bunches o f  t he  standard model hung i n  
d rape- l i ke  f o l d s  w i t h  elongated meshes, producing a deep bow l - l i ke  area 
d i r e c t l y  beneath. As backdown s ta r ted ,  the  bowl fo lded under the  r e s t  o f  the 
channel, as has been observed several t imes by d i v e r s  i n  the  f u l l - s i z e d  
gear. "Stern sway,'' a subsurface, l a t e r a l  f o l d i n g  o f  loose webbing along the  
s te rn  s ide  o f  the  backdown channel (F igure  41, a lso  occurred, as has been 
observed i n  the  f i e l d  ( H o l t s  e t  a1 ., 1979; Coe and Bu t le r ,  1980). 

The webbing under the th ree  bow bunches of the  LVN model d i d  n o t  hang i n  
f o l d s  o r  c rea te  a deep bowl as observed i n  the standard model. Th is  backdown 
channel formed w i thou t  canopies; however, stern-sway and a "sausage-1 i k e "  r o l l  
o f  webbing d i d  develop. 

The main s t resses o r  p u l l i n g  forces du r ing  the  backdown procedure i n  both 
models occurred down the  mesh row from the  apex corks t o  the  cha in  d i r e c t l y  
below. A t  f i r s t ,  t h i s  area o f  t i g h t  meshes formed the f l o o r  o f  t he  channel, 

4Hol ts ,  D.B., R. McLain, F.G. Alverson, and J. DeBeer. 1979. Summary o f  
research r e s u l t s  from the f i f t h  c r u i s e  o f  the  Dedicated Vessel. Southwest 
F i she r ies  Center Admin. Report No. LJ-79-20, 47 p. 
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b u t  as backdown proceeded, i t  cont inued t o  r i s e  and contacted the  s t e r n  s ide  
wa l l  o f  the channel. The gather ing o f  webbing combined w i t h  the  s lack  webbing 
from the s te rn  wa l l  t o  form a sausage-like r o l l  o f  webbing. The channel f l o o r  
was then p r i m a r i l y  made up o f  the  webbing on the  bow s ide  o f  t he  channel 
(F igure  4 ) .  Observations o f  both models were s i m i l a r  t o  the  underwater 
observat ions made i n  f u l l - s i z e  seines (Coe and Bu t le r ,  1980). 

E f f e c t  o f  the Backdown Arc a t  the Apex 

During backdown t r i a l s ,  t he  channel I s  intended apex was suscept ib le  t o  
s h i f t i n g  towards the  bow o r  s te rn  s ide  o f  t he  channel, depending on the  
t u r n i n g  rad ius  o f  t he  r a f t  as i t  moved backwards (F igure  3) .  
model a s t r a i g h t  backdown moved the  in tended apex about 20 cm (equ iva len t  t o  
3-4 fathoms on a f u l l - s i z e d  seine) around t o  the s te rn  s ide  o f  the channel. 
Too t i g h t  an arc  moved the  intended apex a s i m i l a r  d is tance toward the  bow 
side. Conf igura t ion  o f  the  LVN model I s  backdown channel was h i g h l y  dependent 
on the  curve o f  t he  backdown arc.  Minor changes i n  the  degree o f  the  backdown 
arc would r o t a t e  the apex corks ou t  o f  t h e i r  optimum p o s i t i o n ,  and the channel 
would col lapse,.  i f  the  backdown arc was n o t  corrected.  
models cou ld  e a s i l y  be opened o r  co l lapsed by changing the  arc.  
Unfortunately,  we had no method of s tandard iz ing  the t u r n i n g  rad ius  dur ing  
repeated t r i a l s .  The r e s u l t  was some inconsis tency i n  the  l o c a t i o n  o f  the 
apex when t h e  channel f i r s t  became f u l l y  developed. 
minimized by the  conscious e f f o r t  o f  the r a f t  d r i v e r  t o  execute the  backdown 
t r i a l s  as un i fo rm ly  as poss ib le .  
stern-sway development was obvious. 
backdown may a l so  p lay  an a c t i v e  r o l l  i n  the  backdown operat ions o f  commercial 
gear, and a d d i t i o n a l  i n v e s t i g a t i o n s  o f  i t s  e f f e c t  on n e t  c o n f i g u r a t i o n  and 
dol  phin-release e f f i c i e n c y  would be warranted. 

I n  the  standard 

The channels o f  bo th  

This  problem was 

However, some v a r i a t i o n  i n  canopies and 
The f a c t o r  o f  t u r n i n g  rad ius  du r ing  

Mod i f i ca t i ons  t o  the  Backdown Channel 

Four d i f f e r e n t  mod i f i ca t i ons  t o  the backdown procedure were made du r ing  
t h i s  p o r t i o n  o f  the  study. 
mod i f i ca t i ons  were designed around the  concept t h a t  a1 t e r i n g  the  d i s t r i b u t i o n  
o f  fo rces  on the excess webbing i n  the s ides o f  the  channel cou ld  c rea te  a 
l a rge r ,  deeper, more canopy-free channel. 
a1 t e r i n g  the  o l  d p o i n t s  normal ly  a t  work i n  the  backdown channel, we hoped t o  
e l im ina te  some o f  the  s lack webbing along the s te rn  s ide. 

Based on pas t  experiment and observat ion,  these 

By c r e a t i n g  new s t ress  p o i n t s  o r  

T r i a l  1 

I n  our f i r s t  attempt, f o u r  purse r i n g s  ( t h e  r i n g  d i r e c t l y  below the  apex 
cork  and th ree  adjacent  sternward r i n g s )  were p u l l e d  inboard t o  the  l e a d l i n e  
t o  simul a t e  a four- fathom p u l l .  The stern-sway and "sausage" apparent ly  
developed f a s t e r  and invo lved  a l l  the webbing along the  stern-going bar  
markers from the  apex t o  the chain.  
channel, nor  d i d  i t  reduce the  amount o f  the  s lack web responsib le  f o r  
s tern-  sway. 

This  d i d  n o t  increase the  depth o f  the  
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While these observat ions were n o t  encouraging, i t  was decided t o  t e s t  the  
concept a t  sea ( B u t l e r  and Foster,  1981).5 On board a char te red  se iner ,  t he  
purse r i ngs ,  b r i d l e s  and l e a d l i n e  were p u l l e d  inboard o f  the r i n g  s t r i p p e r  
vary ing  d is tances from two t o  fou r  fathoms. Underwater observat ions i n d i c a t e d  
subs tan t ia l  v a r i a b i l  i ty  as t o  where the  "sausage" a c t u a l l y  contacted the  s t e r n  
wa l l  o f  the  channel; stern-sway however s t i l l  ex is ted .  

T r i a l  2 

The second m o d i f i c a t i o n  t o  the backdown procedure was t o  p u l l  i n  e x t r a  
webbing a t  the  s te rn  tie-down po in t .  
c o r k l i n e  and l e a d l i n e  had f a l l e n  behind the  webbing dur ing  n e t - r o l l ,  i.e., as 
i f  the  webbing were r o l l e d  aboard a t  a g rea ter  speed, thus p o t e n t i a l l y  
reducing the amount of s lack web a v a i l a b l e  f o r  stern-sway. 
model t h i s  reduced the amount o f  s lack webbing i n  the  s t e r n  wal l  o f  t he  
backdown channel and e l  iminated the ''sausage" b u t  c rea ted  some minor f o l d s  
along the  apex mesh row a t  the  center  and bottom o f  the  channel. 
p u l l e d  i n  50 cm o f  e x t r a  webbing a t  the s t e r n  tie-down p o i n t  o f  t he  LVN model, 
which represented 14 fathoms on a f u l l - s i z e d  net.  
and sausage more toward the  s te rn  s ide  and r e s u l t e d  i n  a deeper channel. 
major s t ress  p o i n t s  were along the  bar  markers and n o t  down the  meshes as 
observed w i t h  the  standard model. 
stern-going bars apparent ly  made the  channel deeper w i thou t  a1 t e r i n g  the  bas ic  
con f igu ra t i on .  This  procedural  m o d i f i c a t i o n  appeared t o  enhance the backdown 
channel i n  t e s t s  o f  bo th  models, i n d i c a t i n g  a need f o r  fo l low-up s tud ies  t o  
evaluate poss ib le  m e r i t s  o f  reduced webbing along the s t e r n  s ide  o f  the  
channel wa l l  . 

This  s imulated a c o n d i t i o n  where the  

I n  the  standard 

We a l so  

This moved the stern-sway 
The 

D isp lac ing  the  l i n e  o f  s t ress  t o  the 

T r i a l  3 

Our t h i r d  m o d i f i c a t i o n  (s tandard model on l y )  was t o  increase the 
channel 's  base l e n g t h  by a t tach ing  the  bow bunches as f a r  forward on the  p o r t  
bow as poss ib le ,  w h i l e  moving the  s te rn  tie-down p o i n t  as f a r  a f t  as 
possib le .  Th is  approximately doubled the  d is tance between tie-down po in ts .  
New tie-down p o i n t s  had t o  be es tab l i shed f o r  t h i s  t e s t .  
a l lowed development of a wider channel, which was l e s s  i n c l i n e d  t o  co l lapse.  
A d d i t i o n a l l y ,  t he  amount o f  surface area i n  the  channel was g r e a t l y  
increased. The f l o o r  o f  the  channel became q u i t e  shallow, so the  o v e r a l l  
e f f e c t  on volume was minimal. Follow-up t r i a l s  should a l so  be conducted f o r  
t h i  s aspect o f  backdown. 

The procedure 

T r i a l  4 

Researchers w i t h  the  Inter-American Trop ica l  Tuna Commission ( IATTC) 
designed a s i n g l e  o t t e r  board t o  a i d  i n  p revent ing  s te rn  sway and canopies. 
This  ''backdown board" (7.6 cm x 12.7 cm) was at tached t o  the  standard model 's 
c o r k l i n e  on t h e . s t e r n  s ide  o f  the  channel, about two t h i r d s  the  d is tance from 
the apex toward the  tie-down po in t .  A f t e r  some b r i d l e  and l o c a t i o n  

sBut le r ,  R. W. and T. Foster .  
char te r .  Southwest F i she r ies  Center, La J o l l a ,  C a l i f o r n i a ,  25 p-- 

1981. Cruise r e p o r t  o f  t he  M/V Maria C. - J. 
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adjustments, t h e  board prevented the  backdown channel from c o l l a p s i n g  and 
appeared t o  he lp  i n  reducing the  s e v e r i t y  o f  s t e r n  sway by removing some o f  
t h e  s lack webbing i n  t h a t  area. 
and open, thus e f f e c t i n g  a wider channel w i thou t  any apparent l o s s  i n  depth. 
Th is  backdown board concept appears t o  have some m e r i t  by i nc reas ing  the  
sur face  area and by prevent ing  n e t  col lapse. 
model. 

The board p u l l e d  the  s t e r n  s ide  c o r k l i n e  o u t  

It was n o t  t r i e d  on the  LVN 

Poss ib le  Cause o f  A Common Gear Mal f u n c t i o n  

Some o f  t he  problems encountered on f u l l - s c a l e  ne ts  were observed i n  t h e  
model, e.g., broken cha in  l i n e ,  pre-backdown n e t  co l lapse,  winch mal funct ion,  
n e t  co l l apse  du r ing  backdown and n e t  caught i n  the  purse r i n g s  a t  r ings-up. 

Dur ing two sets, webbing d r i f t e d  i n t o  the  b i g h t  o f  the  purse cab le  as the  
r i n g s  were coming up. This web became caught, o r  pinched, between the  purse 
r i n g s  du r ing  the  f i n a l  stages o f  pursing. I n  one case the  c u r r e n t  from a pool 
water j e t  caused the  webbing t o  d r i f t  i n t o  t h e  cable, and i n  the  o t h e r  an 
observer 's  swim f i n  was the  cause. These observat ions support  t he  idea t h a t  
ocean c u r r e n t s  a re  probably one o f  t he  major f a c t o r s  respons ib le  f o r  t h i s  type  
o f  mal f unc t i on .  

LIMITATIONS OF MODEL STUDIES 

A major problem i n  i n t e r p r e t a t i o n  o f  a l l  model-net s tud ies  i s  whether 
hydrodynamic s i m i l a r i t y  i s  achieved between the  model and ac tua l  f i s h i n g  
nets.  
discrepancy between the  model and f u l l  - s i  zed gear (Dickson, 1961). We woul d 
expect some degree o f  discrepancy w i t h  our models due t o  the  s i z e  reduc t ion .  
However, some workers (pers.  comm., J .  A. Eikelman, Jr., S R I  I n t e r n a t i o n a l ,  
August 1978) ma in ta in  t h a t  s c a l i n g  t o  1:lOO i s  poss ib le  i f  one i s  w i l l i n g  t o  
consider o n l y  the  fo rces  o f  drag. Th is  i s  reasonable, s ince  the  behavior o f  
webbing i s  i n f l uenced  more by drag than by the  e f f e c t s  o f  g r a v i t y  and 
turbulence, a t  l e a s t  a t  the  low v e l o c i t i e s  i nvo l ved  i n  the  purs ing  and 
backdown operat ions o f  a purse seine. 

General ly, t he  g rea te r  t he  sca le  reduc t i on  the  g rea te r  t he  performance 

Three bas ic  cond i t i ons  precluded prec ise  dynamic modeling o f  the  purse 
seine system i n  our studies.  F i r s t ,  t he re  i s  subs tan t i a l  v a r i a t i o n  i n  
opera t ing  procedures and n e t  performance among commercial purse seiners,  much 
o f  which has n o t  been measured i n  the  f i e l d .  Second, model ne ts  a re  r a r e l y  
p e r f e c t  m in ia tu res  o f  the  f u l l - s i z e d  gear, because proper m a t e r i a l s  are o f t e n  
d i f f i c u l t  o r  impossible t o  ob ta in .  Las t l y ,  comparative performance t e s t s  o f  
scaled gear and/or procedures be fore  and a f t e r  s e l e c t i v e  m o d i f i c a t i o n (  s )  a re  
app l i cab le  t o  f u l l  sca le  on l y  when the  magnitude o f  t he  modeling e r r o r  i s  
understood. 

Aside from the  assumptions requ i red  f o r  s c a l i n g  and the  d i f f i c u l t y  o f  
o b t a i n i n g  s u i t a b l e  b u i l d i n g  ma te r ia l s ,  t h e  v a l i d i t y  o f  i n t e r p r e t i n g  purse 
seine model t r i a l s  i s  l i m i t e d  by the  i n a b i l i t y  t o  p r e c i s e l y  c o n t r o l  s t a r t i n g  
c o n f i g u r a t i o n s  o f  t h e  ne t .  I n  these t r i a l s ,  f o r  example, i t  was n o t  poss ib le  
t o  standardize the backdown opera t ion  so t h a t  each t e s t  was i n i t i a t e d  from the 
same pre-backdown n e t  con f igu ra t i on .  This would r e q u i r e  p r i v a t e  pool 
f a c i l i t i e s ,  so t h a t  opera t iona l  and support equipment cou ld  be developed t o  
a l l o w  r e p e a t a b i l i t y  o f  t h e  backdown n e t  c o n f i g u r a t i o n  f o r  each t r i a l .  
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One poss ib le  way t o  achieve t h i s  s tandard iza t ion  i s  t o  use a towing 
basin. Here the  model cou ld  be at tached t o  a towing board and mechanical ly 
p u l l e d  through the  water over equal t u r n i n g  arcs and speeds wh i l e  cameras, 
a t tached t o  the  towing board, recorded dynamic changes i n  the  backdown 
channel. However, i n  order  t o  s imulate the  normal backdown arc, a curved 
towing bas in  would be necessary. Unfor tunate ly ,  no curved towing bas ins 
e x i s t ,  and the  s t r a i g h t  ones would on ly  be good f o r  a few l i m i t e d  s tud ies.  
The quest ion i s  j u s t  how r e l i a b l e  experimental r e s u l t s  would be when 
ex t rapo la ted  i n t o  a curved backdown a rc .  
changes i n  apron cons t ruc t ion ,  apex canopi es, ti e-down d i  stances and hang-i n 
ra tes  cou ld  be va luable.  However, problems such as stern-sway, canopy 
format ion a1 ong the  channel s i  des, and backdown channel c o l l  apse are g r e a t l y  
i n f l uenced  by the  se ine r ' s  backdown arc and the re fo re  cannot be s imulated by a 
s t r a i g h t  tow. 

Some r e s u l t s  such as those f o r  major 

RECOMMENDATIONS 

There are  many d i  f f  i c u l  ti es and u n c e r t a i n t i e s  i n  b u i  1 d i  ng and t e s t i n g  
model nets  and some b i a s  i n  performance must be accepted. Modeling, however, 
i s  an inexpensive t o o l  t h a t  can prov ide  a b e t t e r  understanding o f  mechanical 
performance and hydrodynamic behavior o f  f i shi  ng nets,  even though model s 
cannot dup l i ca te  o r  mimic each d e t a i l  o f  any f i s h i n g  operat ion.  
obta ined from model n e t  dynamics t e s t i n g  must be c o r r e l a t e d  w i t h  observat ions 
and measurements o f  f u l l  sca le gear performance. The advantage i n  modeling i s  
t h a t  i t  gives grea ter  assurance t h a t  advanced des ign(s)  w i l l  work. 

Resul ts  

Resul t s  o f  t e s t s  w i  t h  the two e x i  s t i  ng model s ,  however p r e l  i m i  nary, were 
i n fo rma t i ve  w i t h i n  the  l i m i t s  discussed. These t e s t s  i d e n t i f i e d  several  areas 
where equipment o r  procedural  mod i f i ca t i ons  migh t  be u t i l i z e d  i n  the design o f  
new do lph in  saving techniques. These areas i nc lude  1 )  a l t e r a t i o n  o f  channel 
tie-down and s t ress  p o i n t s  t o  f u r t h e r  i d e n t i f y  f a c t o r s  i n f l u e n c i n g  s te rn  sway 
and canopy development, 2) apron design and m o d i f i c a t i o n  s tud ies,  3)  t e s t s  o f  
optimum hang-in c o e f f i c i e n t s ,  4 )  channel -enlargement c a p a b i l i t i e s ,  5) 
a1 t e r n a t i v e  placement o f  "porpoi  se-safety panel S I ' ,  6) s t r a t e g i c  placement o f  
hexagonal mesh i n  the  channel t o  f a c i l i t a t e  optimum water f low. 

A model made o f  hexagonal mesh would be use fu l  i n  determin ing i t s  
a p p l i c a b i l i t y  t o  do lph in  rescue and purse seine dynamics i n  general .  
Hexagonal-mesh webbing i s  c u r r e n t l y  be ing produced i n  Norway and has performed 
favorab ly  i n  Norwegian purse seines (Bel testad,  1980). Hexagonal-mesh nets  
use about 15% l e s s  ma te r ia l ,  s ink  f a s t e r ,  purse eas ier ,  and are  near l y  as 
s t rong as the rhombic mesh purse seines c u r r e n t l y  i n  use. Hexagonal meshes 
are l e s s  prone t o  co l l apse  when being p u l l e d  through the  water. 
ma te r ia l  may be i d e a l l y  s u i t e d  f o r  the western P a c i f i c  tuna f i s h e r y ,  where 
nets  a re  o f t e n  as much as 1000 fathoms long  and 22 s t r i p s  deep. 

Nets o f  t h i s  

A su i  t a b l e  scale f o r  hydrodynamic s tud ies  o f  the  purse-seine operat ion,  
w i t h  emphasis i n  do lph in  rescue and release, i s  1 : l O .  A t  t h i s  scale,  a 
850-fathom (15551111, 1 8 - s t r i p  seine would measure 156 meters (510 f t . )  long, 
f i s h  t o  approximately 13.2 meters and s e t  a 50-m diameter c i r c l e .  Greater 
p r e c i s i o n  i n  dynamic sca l i ng  can be achieved a t  t h i s  sca le than a t  g rea ter  
reduct ions,  and the  necessary ins t rumenta t ion  f o r  measuring depth, speeds, 
volumes, sur face areas, e tc .  i s  c u r r e n t l y  ava i l ab le .  A 1 : l O  model i s  
s u f f i c i e n t l y  l a r g e  t o  a l l ow  attachment o f  the  necessary ins t rumenta t ion  y e t  
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small enough t o  a l l o w  observat ion o f  the  e n t i r e  opera t ion  bo th  from the  
sur face and underwater. 
necessary deck gear f o r  s e t t i n g  and r e t r i e v i n g  the  model seine. 
a l so  s u i t a b l e  f o r  making any number o f  t a i l o r i n g  and design changes q u i c k l y  
and inexpensive ly .  Using a 1:4 mesh scale would a l l ow  f o r  making f a i r l y  
complex m o d i f i c a t i o n s  w i t h  minimal labor ,  because the  l a r g e r  mesh s i z e  would 
a l l ow  use o f  standard net-making too l s .  
va luable t o o l  where the i n v e s t i g a t i o n  o f  a broad range o f  phys ica l  and 
procedural  m o d i f i c a t i o n s  o f  the tuna purse se in ing  system cou ld  l e a d  t o  
advanced designs i n  do lph in  re lease techniques a t  a reasonable cost .  

A1 1 n e t  ma te r ia l  s a re  commercial l y  a v a i l  ab1 e, as are 
This  s i ze  i s  

A model a t  t h i s  sca le would be a 
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Table 1. Physical parameters o f  f u l l - s i z e d  purse seines and t h e i r  models. 

~ ~~~ 

Net Parameters 
Standard Net Large-Vol ume Net (LVN 1 

F u l l  s i ze  Mode 1 F u l l  s i ze  Model 

Geometric Scale 
Length (hung) 
Length (s t re tched)  
Depth (s t re tched)  
Web (ny lon)  
Mesh s i ze  (L )  
Twine s i ze  
Twine diameter (D) 
Twine diameter t o  mesh 
length  r a t i o  (D/L) 
Meshes long 
Meshes deep 
Rat io  twine diameter d/D 
Rat io  mesh length  n/L 
Hang-in c o e f f i c i e n t  

Length 
Diameter 

Cork1 i ne 

F1 oats 
Size 
Buoy a ncy 
Density 
Number 
Total f l o t a t i o n  

Lead l i n e  
Length 
Size 

Weight per meter 
Weight r a t i o  (w/W) 
Total weight 

Purse cable 
Size 
Length 
Total weight 

1 
777.8 m 
864.1 m 

73.5 m 
t rea ted  
1048 mn 
#42 

2.26 mn 
0.55 mn 

8242 
700 

1 
1 

.90 

Nylon,twisted 
777.8 m - 

spongex 
15.2x9.5 cm 

0.99 kg 
118.0 kg/m3 

7000 
6970 kg 

Chain 

11.2mm( 7/16" 1 
777.8 m 

0.32 Kg/m 
1 

372.5 kg 

1:25 
31.1 m 
34.6 rn 
3.1 m 

untreated 
15.2 mm 

210/3 
0.45 mn 
0.75 mn 

2267 
205 

0.200 
0.447 

.90 

Nyl on, bra 
27.9 m 

2.72m 

- 

ded 

19.1x11.9 mm 
3.4 g 

32 kg/m3 

3.64 kg 
1077 

Chain 
28.0 m 

1.3 mm 

2.56 g/m 
0.008 
1.03 kg 

Nylon 
2.97 mn 

30.5 m 

1 
1098 m 
1378 m 
184 m 

t rea ted  
108 mm 
#24 

1.88 mm 
0.44 mn 

12.752 
1700 

1 
1 

.79 

Dacron,twisted 
1098 m 

15.9 mm 

spongex 
16.5x21.6 cm 

118 3*86 kg/m k! 
1098 m 
1389 kg 

Chain 
1098 m 

12.7 mm 
galvanized 
2.79 0.39 kg/m 

1 
4548 kg 

Steel 9x16 
16.0 mn 

1098 rn 
1078 kg  

1 

1:50 
22.0 m 
27.5 m 

3.8 m 
unt reated 

12.7 
7/2-L2 

0.0057" 0.14 mn 
0.29 mm 0.0114 

2176 
300 

0.077 
0.1176 

.79 

Nyl on, bra 
22.0 m 
12.9 mn 

ded 

Polyel thelym 
9.6x12.4 mm 
0.00194 l b s  0.88 g 

32 kg/m3 

1.021 l b s  0.46 kg 

Chain 

528 

22.0 m 

- 
0.73 g/m 
0.05 mm 
0.17 kg 

Nylon, Mono. 
0.79 mm 

22.0 m 
33 9 

s Time reduct ion 1 S 
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Figure  3. The degree o f  t u r n i n g  arc  du r ing  backdown in f l uences  the  l o c a t i o n  o f  
t he  channel apex: A. 
c o r r e c t  apex pos i t i on ,  B. 
around t o  the  bow s ide  of t he  channel and C. Too s t r a i g h t  o f  an a rc  
moves the  apex t o  the  channels s te rn  side. 

Backdown channel w i t h  proper t u r n i n g  arc  f o r  
A t i g h t  t u r n i n g  arc  r o t a t e s  the apex 
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