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Executive Summary 

A workshop was held at the Southwest Fisheries Science Center in Santa Cruz, California, June 
11-12, 2012, bringing together leading experts in the field of productivity, and National Marine 
Fisheries Service economists. The meeting was held to generate discussion about productivity 
concepts, and to begin thinking about how to measure productivity in our nation’s fisheries.  
Productivity is a key driver of profitability, and has been identified as an important indicator for 
fishery performance reports. 

Harvesting a regulated natural resource stock presents challenges for assessing productivity.  
Changing stock abundance, environmental variability fleet heterogeneity (such as what might 
arise when firms employ different production technologies), and regulatory change all affect 
productivity.  In addition, fisheries economists are frequently tasked with measuring productivity 
with little data. 

 This document contains manuscripts submitted by the productivity experts and reflects the 
content of their presentations. It is hoped that this workshop proceedings document will serve as 
a springboard for further productivity research centered on our nation’s fisheries. The variety of 
topics, and the depth in which they are presented, shows that we have merely scratched the 
surface in NOAA regarding productivity change. We still have many opportunities for further 
research in this exciting field.   

  



Introduction. 
 

A workshop was held at the Southwest Fisheries Science Center in Santa Cruz, California, June 
11-12, 2012, which brought together leading experts in the field of productivity, and National 
Marine Fisheries Service Science Center economists. The purpose of the meeting was to generate 
discussion around the concepts of productivity measurement, and to begin thinking about how to 
best measure productivity in our nation’s fisheries.  Productivity is a key metric for 
understanding profitability change, and has been identified as a Tier II indicator for national 
reporting purposes. 

Productivity measurement of fishing fleets has been conducted periodically throughout the years. 
One of the earliest works was by Comitini and Huang (1967) who used a Cobb-Douglas 
technology to characterize the production of 32 halibut fishing vessels in the North Pacific over a 
seven year period. Norton, Miller, and Kenney (1985) used aggregated data from vessels fishing 
in five U.S. fisheries to estimate an Economic Health Index, which contained a productivity 
component that could be examined separately. Squires (1987, 1992) published a study measuring 
productivity in the Pacific Coast Trawl Fishery using an index number approach. Weninger 
(2001) examined changes in productivity for surfclam vessels using a directional distance 
function model.  Jin et al. (2002) measured total factor productivity in the New England 
Groundfish Fishery during the period 1964-2003. Felthoven and Paul (2004) reviewed past 
productivity studies, and suggested a methodology for productivity measurement to answer 
questions concerning economic performance. Fox et al. (2006) examined changes in capacity, 
quota trading and productivity after a license buyback in Australian fisheries. Hannesson (2007) 
used a growth accounting framework to measure productivity change in Norwegian fisheries. 
Squires, Reid, and Jeon (2008) examined productivity growth in the Korean tuna purse seine 
fishery operating in the Pacific Ocean. Felthoven, Paul, and Torres (2009) measured productivity 
in the Alaskan pollock fishery from 1994-2003 while incorporating environmental conditions, 
bycatch and stock effects. Eggert and Tveterås (2011) examined productivity change in 
Icelandic, Norwegian and Swedish fisheries between 1973 and 2003. 

Productivity measurement in fisheries presents challenges that are different from traditional 
industries.  Fundamentally, vessels are harvesting a natural resource stock where the Government 
sets the total harvest level allowed in any given time period. Whether the harvest is controlled 
directly through a total allowable catch, or through indirect measures such as limits on fishing 
time, total output is constrained. In many instances, regulations are intended to make vessels less 
productive. For example, more productive areas (biologically) may be closed, forcing vessels to 
fish less productive fishing grounds. This means vessels will need to use more inputs to catch the 
same amount of fish as they would in the more productive areas. Stock conditions and 
environmental factors can also influence productivity. External drivers, such as changing ocean 
temperatures, can impact overall stock conditions. Failing to recognize external conditions when 
setting catch limits may lead to over harvest in one year, and subsequent harvest reductions in 



the following years.  Finally, different technologies (typically gear types) can be used to harvest 
the same resource, and this needs to be factored into productivity assessments.   

The Santa Cruz workshop was designed to introduce NMFS economists to productivity concepts, 
and at the same time gather ideas from the productivity experts that were invited to attend the 
workshop. Some questions that were posed to the group included: Is there an alternative to the 
Malmquist index to measure productivity for fishing fleets? Do we measure productivity at an 
aggregate or individual vessel level? How do we account for stock conditions in our estimates? 
Do we consider undesirable outputs in our measures? Do binding catch limits matter, and if so 
how? How do we estimate productivity if cost data are lacking? 

This document contains selected papers from participants in the workshop. There are a wide 
variety of topics covered in the manuscripts. By not focusing solely on fisheries, it is hoped that 
the ideas presented here will help inform and develop the next generation of productivity models 
in fisheries.  A brief description of each paper follows. The presenter for each paper is in bold 
print. 

E. Griffell-Tatjé and Knox Lovell presented a framework that links financial performance, price, 
productivity and capacity constraints using the DuPont triangle. Productivity is measured using 
both a price and technology based index.  Although the DuPont triangle has not been applied in 
fisheries, the methods shown in their paper could be used in many commercial fisheries given 
availability of appropriate data. Thus, the paper presents a way forward in development of 
rigorous financial performance indicators.  

Kristiaan Kerstens and Ignace Van de Woestyne explored the difference in Productivity 
measures using balanced and unbalanced panel data. This is important because in most 
productivity studies in fisheries, entry and exit of vessels in each year leads to unbalanced panel 
data.  Determining how to handle unbalanced panel data is a challenging question for fishery 
researchers. 

Eldon Ball and Sun Ling Wang presented the methods used by the U.S. Department of 
Agriculture Economic Research Service (ERS) to estimate productivity growth for the farm 
sector, based on the Törnqvist index. The ERS has been publishing estimates of total factor 
productivity since the 1960s. Their work can help inform the National Marine Fisheries Service 
on ways to carry out productivity estimates for our catch share fisheries.  

Subhash Ray presented a method for decomposing the cost competiveness of a firm, relative to 
a rival, and showed how efficiency changes, relative price changes and technical change affect 
cost competitiveness. With the move to catch share fisheries management, where total output is 
fixed, the role that these factors play in overall profitability of vessels will become more 
important.  



Trevor Collier, Aaron Mamula and John Ruggiero presented a model to incorporate exogenous 
factors into a DEA efficiency model, and then apply the model to vessels in the California 
groundfish trawl fishery.  In a fisheries context, this is important because environmental 
conditions can change throughout, and between years. Their application examined crowding 
externalities, which can result from various regulations such as area closures and effort 
limitations. 

Kristiaan Kerstens and Niels Vestergaard examined the impact of the convexity assumption on 
fishing capacity estimates. This is a topic which has not generated a lot of attention, but is very 
important in fisheries. Assuming convexity when it does not exist may lead to unrealistic 
capacity estimates. Decommissioning schemes based on unrealistic capacity estimates may result 
in retiring too many vessels, at a higher cost than is necessary. 

Chris O’Donnell used Bayesian methods to compute and decompose a Färe-Primont index of 
total factor productivity change in the Australian Northern Prawn Fishery. A Bayesian approach 
offers some advantages for the study of fishing vessels, because inferences can be made about 
productivity with little data.  This is often a problem facing researchers using data sets with 
aggregated data from fleets of vessels. A further advantage to this approach is that it solves the 
endogeneity problem in econometric estimation of multiple-input, multiple-output distance 
functions.   

Ole Olesen, John Ruggiero, and Aaron Mamula estimated a nonparametric homothetic S-Shaped 
production relation for U.S. West Coast groundfish vessels. Their paper presents an approach 
which hasn’t been attempted before in the fisheries literature, but which holds promise for future 
work. For example, scale characteristics of various fishing fleets can be estimated using this 
approach. 

Carl Pasurka presented a paper on undesirable outputs in productivity estimates, and how the 
literature has evolved during the past 30 years. This is a topic which is very important in the 
context of fisheries, as discards from fishing vessels have been identified as a major contributor 
to fishing mortality worldwide. How to adjust productivity estimates to account for discards is a 
topic which needs further discussion. 

 

We hope that the reader of this document will take full account of the depth and breadth of the 
manuscripts submitted by each author.  

  



NMFS Productivity Workshop, June 11-12, 2012, Southwest Fisheries Science Center, 
Santa Cruz, CA. 

Monday, June 11th.  

8:30. Welcome and Introductions. Conference 
Logistics 

Aaron Mamula, Southwest Fisheries Science 
Center, Santa Cruz. 

8:45-9:00. NMFS National Performance Measure 
Initiative and Productivity 

Eric Thunberg, NMFS Office of Science and 
Technology 

9:00-9:20. Workshop Objectives. Productivity 
Issues in Fisheries  

John Walden, Northeast Fisheries Science Center 

9:20-10:00. Productivity, Capacity Constraints and 
their Financial Consequences. 
 

C.A. Knox Lovell, U. of Queensland 

10:00 – 10:30  Break  
10:30-11:10 Primal Productivity Indices: Exploring 
the Impact of Unbalanced Panel Data 

Kris Kerstens, IESEG School of Management. 

11:15-11:55 The U.S. Agricultural Productivity 
Slowdown: When and Why? 

Sun Ling Wang, USDA Economic Research 
Service 

12:00-1:00  Lunch  
1:00-1:15 Follow-up questions from Morning 
Session 

 

1:20-1:40 Overview of Alaska Region Fisheries Ron Felthoven, Alaska Fisheries Science Center 
1:45 – 2:25 Productivity Change over time and the 
Dynamics of Cost Competition 

Subhash Ray, U. of Connecticut 

2:30 -2:50 Hawaii Fisheries Minling Pan, Pacific Islands Fisheries Science 
Center 

3:00-3:30 Break  
3:30-4:10 Nonparametric Estimation of Efficiency 
in Commercial Fisheries in the Presence of 
Nondiscretionary Factors of Production 

John Ruggiero, U. of Dayton 

4:15-4:55 Primal and dual approaches to fishing 
capacity: The impact of the convexity assumption. 

Niels Vestergaard, U. of Southern Denmark  

5:00-5:15 Wrap up day One  
                                   

  



Tuesday June 12th. 

9:00 – 9:15. Day two objectives. Outstanding 
questions from Day One 

 

9:15-10:00 Econometric Estimates of Productivity 
and Efficiency Change in the Australian Northern 
Prawn Fishery 

Chris O’Donnell, U. of Queensland 

10:00-10:30 Break  
10:30-10:50 Overview of Southeast Fisheries Juan Agar, Southeast Fisheries Science Center 
10:50-11:30 Estimating a nonparametric 
homothetic S-Shaped production relation for the 
U.S. West Coast Groundfish Production 2004-
2007.  

Ole Olesen, University of Southern Denmark 

11:30-11:50 Overview of Northwest Fisheries Erin Steiner, Northwest Fisheries Science Center 
12:00-1:00 Lunch  
1:00-1:40 Adventures in Modeling the Joint 
Production of Good and Bad Outputs: A 30 Year 
retrospective 

Carl Pasurka, Environmental Protection Agency 

1:45 – 2:30 Technical Change and the Commons Dale Squires, Southwest Fisheries Science Center, 
La Jolla 

2:30-3:00 Measuring Productivity Change in the 
Northeast Multispecies Fishery using a Fisher 
Index. 

John Walden, Northeast Fisheries Science Center 

3:00 – 3:30  Break  
3:30 – 5:00  Wrap-up  
 

  



Recommendations 

During the afternoon of June 12th, a discussion was held among NMFS economists and external 
participants about recommendations for constructing productivity metrics for national reporting 
purposes. The Malmquist index has initially been identified as the preferred metric for measuring 
productivity, and there needed to be further discussion about whether this was still appropriate 
given the workshop presentations. 

Workshop participants seemed to agree that an aggregate metric, using a “Fisher form” index, 
with a fixed period base is the best way to proceed. This requires fixing the base to a mutually 
agreed upon time period.  It was further recommended that a Lowe Index would be the best 
index to construct because it is a transitive index. The construction of the Lowe Index requires 
data on output quantities and prices, along with input quantities and prices. If price information 
is not available, then the panelists recommended that we pursue a Färe-Primont Index, which 
only requires output and input quantities.   

The most difficult part of constructing the index will be getting input price information (and 
perhaps quantity for some inputs).  If this situation arises, a mixed approach can be pursued 
where the Malmquist, or Färe-Primont Index is used to measure input growth for the 
denominator, and a Lowe index for output growth in numerator are combined.  In order to 
aggregate inputs to the industry level in the denominator, individual scores can be aggregated 
using revenue shares.   

Finally, a discussion needs to occur between regional economists about the data needed to 
construct these indices.  That conversation should occur before the indices are actually 
constructed. 
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Abstract 
 
 Mining and fishing are both extractive industries, although one resource is 
renewable and the other is not. Miners and fishers pursue financial objectives, 
although their objectives may differ. In both industries financial performance is 
influenced by productivity and price recovery. Finally, in both industries capacity 
constraints influence financial performance, perhaps but not necessarily through 
their impact on productivity, and both industries encounter external as well as 
internal capacity constraints. 

 The objective of this study is to develop an analytical framework that links all 
four phenomena. We use return on assets to measure financial performance, and 
the basic analytical framework is the duPont triangle. We measure productivity in two 
ways, with a theoretical technology-based index and with an empirical price-based 
index. We measure price change with an empirical quantity-based index. We 
measure internal capacity utilisation by relating a pair of output quantity vectors, 
actual output and full capacity output, and we develop physical and economic 
measures of internal capacity utilisation. External capacity constraints restrict the 
ability to reach full capacity output. The analytical framework has productivity 
change, price change and change in capacity utilisation influencing change in return 
on assets, the latter in two ways, directly and indirectly through its impact on 
productivity change.  
 
 
 
JEL classification: D24 
 
Keywords: duPont triangle, capacity utilization, productivity, price recovery 
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Productivity, Price Recovery, Capacity Constraints  
and their Financial Consequences 

 
 
 
1. Introduction 

 Mining and fishing are both extractive industries, although one resource is 
renewable and the other is not. Miners and fishers pursue financial objectives, 
although their objectives may differ. In both industries productivity and prices 
influence financial performance. In both industries capacity constraints influence 
financial performance, perhaps but not necessarily through their impact on 
productivity, and both industries encounter external as well as internal capacity 
constraints. 

 We offer two relevant illustrations. First, global mining giant Rio Tinto has 
generated impressive, and volatile, financial results throughout the recent mining 
boom. Figure 1 shows five-year moving averages of return on assets and its two 
components, profit margin and asset turnover, from 2007 through 2011.1 One would 
like to learn something about the sources of the observed volatility in return on 
assets that digs deeper than just variation in the profit margin and asset turnover. 
Variation in productivity, prices and capacity constraints are likely sources.  

Second, ABARES (2012) publishes a fisheries surveys report. The report 
provides detailed boat-level financial information, averaged over boats, within each 
of two fisheries, and similarly detailed economic information for the fisheries 
themselves. The boat-level financial information includes alternative measures of 
profit and return on assets. The fishery economic information includes profit and net 
economic returns, which adjusts profit in several ways, including the incorporation of 
the costs of managing the fishery. One would like to know something about the 
sources of variation in profit and return on assets across boats within a fishery, and 
the sources of variation in net economic returns through time and across fisheries. 
Again, variation in productivity, prices and capacity constraints are likely sources.   

The objective of this study is to develop an analytical framework that links all 
four phenomena, financial performance, productivity, prices and capacity constraints. 
We use return on assets ROA to measure financial performance, and the basic 
analytical framework is the duPont triangle depicted in Figure 1. We measure 
productivity change Y/X in two ways, with a theoretical technology-based index and 
with an empirical price-based index. We measure price recovery change P/W with an 
empirical quantity-based index. We measure capacity utilization CU by relating a pair 
of output quantity vectors, actual output and full capacity output, and we develop 
physical and economic measures of CU. The analytical framework has Y/X, P/W and 
CU influencing ROA, the latter in two ways, directly and indirectly through its impact 
on productivity. 
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The study unfolds as follows. In Section 2 we introduce the duPont triangle as 
a framework for financial performance evaluation. In Section 3 we attempt to 
incorporate Y/X and CU into the duPont triangle. We succeed with CU and fail with 
Y/X because, while CU is an absolute indicator, Y/X is a relative indicator that 
compares one situation with another. Accordingly, in Section 4 we compare ROA in 
two time periods by converting the analytical framework to an inter-temporal one, 
and we seek to exploit the duPont triangle format to attribute ROA change from one 
period to the next to CU change and productivity change. Once again we succeed 
with CU change and fail with productivity change. In Sections 2-4 we ignore price 
change as an ROA driver; we would have failed, for the same reason we fail with 
productivity change. In Section 5 we develop a pair of analytical frameworks within 
which CU change, productivity change and price recovery change drive ROA 
change. In Sections 2-5 CU is an internal measure associated with short run fixity of 
some inputs used by the firm. In Section 6 we introduce external capacity constraints 
resulting from regulation and other sources outside the firm, and we show how these 
external capacity constraints can render some or all internal capacity constraints 
redundant. Section 7 concludes. 

2. The duPont Triangle 

ROA is a widely used measure of financial performance. Bliss (1923), in 
discussing ROA, claims that “[f]rom the operating point of view as distinguished from 
the stockholders’ point of view, the real measure of the financial return earned by a 
business is the percentage of operating profits earned on the total capital used in the 
conduct of such operations…regardless from what sources such capital may have 
been secured.” Two duPont executives, Kline & Hessler (1952), concur, writing that 
“It is our considered opinion, which has been critically re-examined many times over 
three decades, that a manufacturing enterprise with large capital committed to the 
manufacture and sale of goods can best measure and judge the effectiveness of 
effort in terms of ‘return on investment’.” Amey (1969) calls ROA “the key index of 
business ‘success’,” even though he acknowledges that maximizing ROA and 
maximizing profit in absolute terms do not generally coincide. Amey continues, 
“…maximization of profits in absolute terms will be taken as the firm’s objective; this 
can then be expressed as a rate of return.” (italics in the original) Thus ROA is an 
observable consequence of the pursuit of a different (indeed, almost any) objective. 

ROA sits atop the duPont triangle, a management accounting system 
developed at duPont and General Motors (GM) early in the 20th century. Even then 
both duPont and GM were diversified corporations, producing a variety of products in 
several locations, and management had to decide how to allocate capital investment, 
as well as other resources and managerial compensation, across product lines and 
among plants. The allocation criterion duPont and GM used was the return on those 
investments, ROA. The developers also devised a product pricing formula designed 
to set product prices that would yield a desired ROA when production was at 
standard volume, defined at GM to be two shifts per day.  
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To assist in the resource allocation and product pricing strategies, ROA = /A 

was decomposed into a pair of financial ratios that drive /A. This in turn enabled 

management to develop strategies intended to enhance either ratio, and hence /A. 

The decomposition states that /A is the product of the profit margin /R, and asset 

turnover R/A. /R indicates how much of sales revenue a firm retains as profit rather 

than absorbs as expense. An increase in /R is consistent with an improvement in 
cost efficiency, the adoption of cost-saving technology, a reduction in input prices or 
an increase in output prices. R/A indicates the revenue productivity of a firm’s 
assets. An increase in R/A suggests that capital is being allocated to higher-valued 
uses, or output prices are increasing.2 

For our purposes it is important to note that the duPont triangle does not 
contain measures of CU, Y/X or P/W, any one of which is a potential driver of /R 
and/or R/A. We incorporate CU in Section 3, we incorporate CU and Y/X in Section 
4, and we incorporate CU, Y/X and P/W in Section 5. 

3. Capacity Utilization  

Incorporating CU into a duPont triangle requires a definition of capacity, and 
there are several to choose from. A generic approach is to write the triangle as 
 

/A = /R × R/A  
 

       = /R × (pTy/pTyc) × (pTyc/A),                          (1) 
 

with output price vector p  Rାା , output quantity vector y  Rା and capacity output 

quantity vector yc  Rା. Weighting y and yc by p maintains the financial structure of 
the triangle and, more significantly for our purposes, allows M>1. Expression (1) 
decomposes ROA into the product of three drivers: the profit margin, the rate of 
capacity utilization, and potential asset turnover, the turnover that would occur at full 
capacity output. We now consider how to define yc.  

 Figure 2 supports three definitions of capacity and its rate of utilization. We 
observe output vector y and input vector x, with y  P(x) and feasible set P(x) 

bounded above by its frontier PF(x). All y  PF(x) are maximum output vectors that 
can be produced with x and given technology. The technically efficient output vector 
associated with y is ya = y/Do(x,y), with Do(x,y) an output distance function defined as 
Do(x,y) = min{: y/  P(x), and the technical efficiency of y is y/ya = Do(x,y)  1. We 
next partition x into fixed and variable sub-vectors, so that x = (x,x୴), and by fixity of 

x we mean x  xത. Following Gold (1955) and Johansen (1968), we define P(xത) as 

the set of feasible output vectors obtainable from x  xത when no constraint is 
imposed on the availability and use of x୴. P(xത) is bounded above by its frontier 

PF(xത), and all y  PF(xത) are full capacity output vectors, given x  xത and 
technology.3 
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Our first definition of capacity and its rate of utilization follows Gold and 
Johansen, and solves an output maximization problem. It is independent of prices, 
and defines capacity output as the largest feasible radial expansion of y. In Figure 2 
yGJ = y/Do(xത,y)  PF(xത) is the full capacity output vector associated with actual 

output vector y, with Do(xത,y) = min{: y/  P(xത)},  and so the rate of capacity 

utilization is CUGJ = Do(xത,y)  1. The superscript “GJ” honors the two pioneers, Gold 
and Johansen. CUGJ is measured holding the output mix constant, and so is useful 
without output price information even when M > 1. CUGJ is a gross measure that can 
be decomposed into the product of an output-oriented technical efficiency term 
[Do(x,y)  1] and a net capacity utilization term [Do(xത,y)/Do(x,y)  1]. We refer to the 
two components of CUGJ as wasted capacity and excess capacity, respectively.4 

Our second definition follows Segerson & Squires (1995) and Lindebo et al. 
(2007), and solves a revenue maximization problem.5 It is dependent on the output 
price vector p, and defines capacity output as the vector yr  PF(xത) that solves the 

revenue maximization problem max୷{p
Ty: x  xത}, and so the rate of capacity 

utilization is CUr = pTy/pTyr  1. In Figure 2 the vectors ya = y/Do(x,y)  PF(x) and yGJ 

= y/Do(xത,y)  PF(xത) divide revenue-based capacity utilization into three components, 

an output-oriented technical efficiency term pTy/pTya = Do(x,y)  1 and a pair of 
capacity utilization components, a radial capacity utilization term pTya/pTyGJ = 
Do(xത,y)/Do(x,y)  1 and an output mix term pTyGJ/pTyr. We refer to the three 
components as wasted capacity, excess capacity, and misallocated capacity, 
respectively. Wasted capacity and excess capacity have the same interpretations 
and magnitudes as in the output maximization problem, and misallocated capacity is 
new. It captures the economic value of an optimizing movement along PF(xത) to 
adapt the output mix to prevailing output prices. 

Our third definition follows Coelli et al. (2002), and solves a variable profit 
maximization problem, with variable profit π୴ = pTy – w୴

Tx୴, w୴ being the variable 
input price vector and w୴

Tx୴  being variable cost. This definition is dependent on two 
price vectors, p and w୴. It defines capacity output as the output vector y୴  
PF(xത,x୴୴) that, together with x୴୴, solves the variable profit maximization problem 
max୷,୶౬{p

Ty - w୴
Tx୴: x  xത}, so that maximum π୴୴ = pTyv - w୴

Tx୴୴. The rate of 

capacity utilization is CUv = pTy/pTyv. The vectors ya = y/Do(x,y)  PF(x) and yb = 

y/Do(xത, x୴୴,y)  PF(xത,x୴୴) divide CUv into an output-oriented technical efficiency 

term pTy/pTya = Do(x,y)  1 and a pair of capacity utilization components, a radial 

capacity utilization term pTya/pTyb = Do(xത,x୴୴,y)/Do(x,y)  1, and an output mix term 

pTyb/pTyv. As in the revenue maximization problem we refer to the three components 
as wasted capacity, excess capacity, and misallocated capacity, although excess 
capacity and misallocated capacity have different magnitudes in the two problems.6 

We are now prepared to introduce capacity utilization into a duPont triangle. 
For the output maximization problem we have 
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      /A = /R × R/A 
        

       = /R × pTy/[pTy/Do(xത,y)] × [pTy/Do(xത,y)]/A,                       (2) 

 
in which CUGJ is pTy/[pTy/Do(xത,y)] = pTy/pTyGJ = R/RGJ = Do(xത,y), and asset turnover 
is converted to potential asset turnover, defined as [pTy/Do(xത,y)]/A = pTyGJ/A = RGJ/A. 
Although CUGJ appears to be price-dependent, prices appear in CUGJ to implement 
the division operator, and to maintain a revenue-based numerator in the potential 
asset turnover term. As above, CUGJ decomposes into wasted capacity and excess 
capacity components, and so expression (2) contains four drivers of ROA. 

For the revenue maximization problem we have 

 
      /A = /R × R/A 
 
       = /R × pTy/pTyr × pTyr/A,                   (3) 
 

in which CUr is pTy/pTyr = R/Rr and potential asset turnover is pTyr/A = Rr/A. In this 
case CUr is price-dependent, and decomposes into wasted capacity, excess 
capacity and misallocated capacity. Consequently expression (3) contains five 
drivers of ROA. 

 For the variable profit maximization problem we have 

 
     π୴/A = π୴/R × R/A          
  

        = π୴୴/pTyv × π୴/π୴୴ × pTyv/A,                (4)
  

in which the profit margin is converted to a potential profit margin π୴୴/pTyv = π୴୴/Rv, 

CUv is π୴/π୴୴, and potential asset turnover is pTyv/A = Rv/A. CUv remains price-
dependent, and decomposes into wasted capacity, excess capacity and misallocated 
capacity. Expression (4) also contains five drivers of ROA. 

 The three CU measures are derived from an analytical framework in which x 
 xത, and therefore C = w

Tx  Cത = w
Txത. However it is possible to impose C  Cത 

without imposing x  xത, thereby allowing substitution among fixed inputs along a 

fixed input budget constraint C  Cത. This formulation is particularly appropriate if 
information on w is unavailable. However if this information is available, then the 

constraints x  xത collapse to a single constraint wf
Txf  Cത  (w/Cത)

Tx  1. This 
strategy allows the construction of three “fixed cost indirect” CU measures 
corresponding to the three direct measures in expressions (2) – (4). In this case P(xത) 
is replaced by P(w/Cത)  P(xത), and so each indirect CU measure is smaller than its 
corresponding direct CU measure. Referring to Figure 8.2, PF(x) remains 
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unchanged, PF(xത,x୴୴) expands to PF(w/Cത,x୴୴), and PF(xത) expands to PF(w/Cത). The 
full capacity output quantity vectors increase accordingly.7  

The output maximization problem becomes max୷{y: (w/Cത)
Txf  1}, and the 

associated duPont triangle is  

 
      /A = /R × R/A 
        

       = /R × pTy/[pTy/Do(w/Cത,y)] × [pTy/Do(w/Cത,y)]/A,            (5) 

 

in which the fixed cost indirect CUGJ simplifies to Do(w/Cത,y). 

 The revenue maximization problem becomes max୷{p
Ty: (w/Cത)  1}, and the 

associated duPont triangle is unchanged from that in expression (3), with the proviso 
that yr  PF(w/Cത). The variable profit maximization problem becomes max୷,୶౬{p

Ty - 

w୴
x୴: (w/Cത)  1}, and the associated duPont triangle is unchanged from that in 

expression (4), with the proviso that yv  PF(w/Cത,x୴୴).  

 The direct and fixed cost indirect analyses are structurally similar; the only 
difference is the expansion of the direct output sets PF(xf,xv

v) and PF(xf) to the fixed 

cost indirect output sets PF(w/Cത,x୴୴) and PF(w/Cത), and the corresponding 
reductions in capacity utilization. The virtues of the fixed cost indirect approach are 
(i) at the producer level it offers flexibility in the allocation of fixed cost budgets, (ii) at 
the industry level it offers managers and/or regulators an alternative way of 
restricting capacity, by assigning quotas to a single variable C  Cത rather than 

several x  xത, and (iii) at the analyst level it shrinks the number of direct constraints 
in an optimization problem.  

We have introduced direct and fixed cost indirect measures of capacity 
utilization into a duPont triangle. We now attempt to introduce productivity into a 
duPont triangle by extending expression (1) to 

 
/A = /R × pTy/pTyc × pTyc/A 
 
       = [1 – (C/R)] × pTy/pTyc × pTyc/A,                (6) 
 

in which C/R is the ratio of cost to revenue, also known as the operating ratio or the 
expense ratio. Gold argued, convincingly, that productivity was negatively related to 
C and positively related to R, both of which are positively related to /R.  

Gold’s argument is persuasive, but analytically deficient. Y/X does not appear 
explicitly in expression (6) as a driver of /R. Its role is played out behind the scenes. 
There is a reason for its absence. The components of the duPont triangle are 
absolute variables describing levels. But Y/X is a relative variable describing change 
from one situation to another. Any attempt to incorporate a relative variable into a 
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relationship among absolute variables is destined to fail. Incorporating productivity 
into a duPont triangle requires construction of a pair of triangles, so that change from 
one to another may be driven in part by productivity change. We undertake this 
exercise in Section 4. 

4. Drivers of  ROA Change 

In this Section we convert an atemporal duPont triangle to an intertemporal 
duPont triangle change. We then show how change in the rate of capacity utilization 
and productivity change affect ROA change.  

The ratio of comparison period to base period duPont triangles is 

 (/A)1/(/A)o = (/R)1/(/R)o × (R/A)1/(R/A)o.              (7) 

We consider three different strategies for incorporating change in the rate of capacity 
utilization and productivity change into expression (7). All three strategies are based 
on Gold’s expression 

Y/X = Yc/X × Y/Yc,                  (8) 

 
in which Y and X are output and input quantity indexes and Yc is a full capacity 
output quantity index derived from any one of the six direct and indirect capacity 
output vectors defined in Section 3. The three quantity indexes can be either 
theoretical technology-based indexes or empirical price-based indexes. Expression 
(8) states that actual productivity change Y/X is the product of potential productivity 
change Yc/X and change in capacity utilization Y/Yc. Gold provides a detailed 
discussion of the relationship, and of the relative merits of Y/X and the less volatile 
Yc/X as productivity indexes. 

One strategy is to introduce Y/X = Yc/X × Y/Yc directly into the profit margin 
change leg of expression (7), generating a model in which CU change influences 
Y/X, which influences /R change, which drives ROA change. In this strategy the 
analysis proceeds in two steps. In the first step we use any of the six optimization 
problems to create a full capacity output vector yc. In the second step we use yc to 
derive CU = Y/Yc and to derive (and perhaps decompose) the Yc/X component of 
Y/X. This generates the expression 
 

(/A)1/(/A)o = (/R)1/(/R)o × (R/A)1/(R/A)o      
 
                                   Y/X = Yc/X × Y/Yc.                         (9) 
 

A second strategy starts with a duPont triangle that incorporates capacity 
utilization. It converts the triangle to a triangle change and continues by introducing 
Y/X into the profit margin change leg of the triangle. This strategy generates a model 
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in which Y/X influences ROA change through the /R change leg, and CU change 
influences ROA change independently, but CU change does not influence Y/X. 
Using generic expression (1) and writing Rc = pTyc generates the expression  
 

(/A)1/(/A)o = (/R)1/(/R)o × CU1/CUo × (Rc/A)1/(Rc/A)o 

  

                 Y/X.                         (10)
      

A third strategy starts with a duPont triangle that incorporates capacity 
utilization, converts it to a triangle change, and continues by introducing Y/X = Yc/X × 
Y/Yc into the profit margin change leg of the triangle change. This strategy generates 
a model in which Y/X influences ROA change through the /R change leg, and CU 
change influences ROA change twice, once through its impact on productivity 
change in the profit margin change leg, and again independently. Again using 
expression (1) to illustrate, we have8 
 

(/A)1/(/A)o = (/R)1/(/R)o × CU1/CUo × (Rc/A)1/(Rc/A)o 

  
                  Y/X = Yc/X × Y/Yc.                                 (11) 
 

These three strategies raise an issue. What is the most likely relationship 
linking CU change, productivity change and ROA change? The first strategy is 
preferred if CU change influences productivity change, which influences ROA 
change, but CU change has no independent influence on ROA change. The second 
strategy is preferred if CU change influences ROA change independently and has no 
influence on productivity change. The third strategy encompasses the first two, and 
is preferred if CU change influences ROA change independently, and again through 
its impact on productivity change, which influences ROA change. All three choices 
face the challenge, originally encountered by Gold, of showing analytically how Y/X 
influences the profit margin change leg of the duPont triangle. The driving 
relationships in expressions (9) – (11) are hypotheses rather than analytical 
demonstrations. We meet this challenge in Section 5. 

5. Incorporating Productivity Change into a duPont Triangle Change 

In this Section we introduce price change, and we show how productivity 
change and price change drive margin change, and thus ROA change. We have 
already shown that it is straightforward to incorporate change in the rate of capacity 
utilization into a duPont triangle change expression, and we write, using yc as the 
solution vector to any of the six direct and indirect optimization problems in Section 
3, 
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ሺૈ ⁄ۯ ሻ

ሺૈ ⁄ሻۯ  = ܗ
ሺૈ ⁄܀ ሻ

ሺૈ ⁄ሻ܀  × ܗ
ሺܘܡ܂ሻ ሺܘܡ܂܋ሻൗ

ሺܗܡ܂ܗܘሻ ሺ܋ܗܡ܂ܗܘሻ⁄
 × 

ሺܘܡ܂܋ሻ ⁄ۯ

ሺ܋ܗܡ܂ܗܘሻ ⁄ܗۯ
 ,          (12) 

which attributes ROA change to profit margin change, change in the rate of capacity 
utilization, and change in potential asset turnover. Change in the rate of capacity 
utilization exerts an independent influence on ROA change, but neither productivity 
change nor price change appears in expression (12). 

  We now consider how price change and productivity change influence ROA 
change. The key is to acknowledge that change in the profit margin derives from 
price change and quantity change, and we write 

 
	భ ୖభ⁄ 				

 ୖ⁄
ൌ ቂ

	భ ୖభ⁄


భ ୖ

భ⁄
ቃ ൈ ቂ

భ ୖభ⁄

 ୖ⁄
ቃ 

     =	ቂభ
 ୖభ

⁄

 ୖ⁄
ቃ ൈ ቂ	

భ ୖభ⁄

భ
 ୖభ

⁄
ቃ,                                                       (13) 

where π୭ଵ  = poTy1 – woTx1 and R୭ଵ  = poTy1 in the first equality are comparison period 

profit and revenue evaluated at base period prices, and πଵ
୭ and Rଵ

୭ in the second 
equality are base period profit and revenue evaluated at comparison period prices. 
We focus on the first equality, in which the first term on the right side is that part of 
the margin change that can be attributed solely to price change, since it compares 
nominal and real comparison period margins. The second term on the right side is 
that part of the margin change attributable solely to quantity change, since it 
compares the real comparison period margin with the nominal base period margin. 
We return to the second equality in Section 5.2.9 

 We develop two strategies for decomposing the margin change component of 
ROA change. In the first we express the quantity effect in terms of the theoretical 
productivity index proposed by Caves et al. (1982). In the second we express the 
quantity effect in terms of empirical Laspeyres, Paasche and Fisher quantity 
indexes. Both strategies decompose the quantity effect, but in different ways. 
Problems with the first strategy include (i) the CCD productivity index is not in Y/X 
form; (ii) decomposing the quantity effect in terms of a CCD productivity index 
requires cost allocation, so that wTx = cTy, with c  Rାା  a vector of unit costs of 
producing each output; (iii) it is not possible to express the price effect in terms of a 
CCD price recovery index that has a meaningful economic interpretation; and (iv) 
the CCD productivity index must be estimated, which requires degrees of freedom. 
The second strategy requires information on output and input prices. Of course 
drawbacks of one strategy are strengths of the other. 

 

5.1 The Theoretical CCD Productivity Index Strategy 
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We focus on the quantity effect ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ in the first equality in expression (13). 

Assuming that cost allocation is feasible, we can write10 
 

o = poTyo - woTxo  

    = poTyo – coTyo  

    = (po- co)Tyo,                 (14) 

where woTxo = coTyo, co being a vector of base period unit costs of producing each 
output. Writing base period profit in this way enables us to rewrite the base period 
profit margin as 

  


ୖ
 = [(po- co)Tyo]/Ro 

      = [(po- co)/Ro]Tyo] 

      = oTyo,                            (15)                       
 

where o = (po - co)/Ro. Similarly, we can rewrite the real comparison period profit 
margin as 

భ

ୖ
భ = [(po- c୭ଵ)

Ty1]/R୭ଵ              

                = [(po- c୭ଵ)/R୭ଵ ]Ty1 

                = ρ୭ଵ
Ty1,                            (16)                       

 
where c୭ଵy1 = woTx1 and ρ୭ଵ = (po - c୭ଵ)/R୭ଵ . Consequently the quantity effect can be 
rewritten as  
 

 ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ 	ൌ 	

ρ
భ୷భ

୷
.                 (17) 

 
 

The next step is to interpret expression (17), which we do with the assistance 
of Figure 3, in which To and T1 are base period and comparison period production 
frontiers analogous to PFo(xo) and PF1(x1). We have 

 

 ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ 		ൌ 	 

ρ
భ୷భ ρ

భ୷ిൗ

୷ ρ
భ୷ఽൗ

൨ ൈ ቂ
୷ా

୷ఽ
ቃ ൈ 

ρ
భ୷ి

୷ా
൨,                  (18) 

 
where yA = yo/D୭୭(xo,yo), yB = yo/D୭ଵ(xo,yo) and yC = y1/D୭ଵ(x1,y1). We can rewrite 
expression (18) as 
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 ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ 	ൌ 	 ቂ

ୈభሺ୶భ,୷భሻ

ୈ
భሺ୶,୷ሻ

ቃ ൈ 
ρ
భ୷ి

୷ా
൨ 

                     =  ቂୈ
భሺ୶భ,୷భሻ

ୈ
ሺ୶,୷ሻ

ቃ ൈ ቂୈ
ሺ୶,୷ሻ

ୈ
భሺ୶,୷ሻ

ቃ ൈ 
ρ
భ୷ి

୷ా
൨,                   (19) 

 

where ቂୈ
భሺ୶భ,୷భሻ

ୈ
భሺ୶,୷ሻ

ቃ = ቂୈ
భሺ୶భ,୷భሻ

ୈ
ሺ୶,୷ሻ

ቃ ൈ ቂୈ
ሺ୶,୷ሻ

ୈ
భሺ୶,୷ሻ

ቃ is an output-oriented comparison period 

CCD productivity index. We know from Caves et al. (1982) that the two components 
D୭ଵ(x1,y1)/D୭୭(xo,yo) and D୭୭(xo,yo)/D୭ଵ(xo,yo) measure technical efficiency change and 
technical change respectively, as is apparent from Figure 3. Consequently11 

     ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ 	ൌ 	Mେେୈ

ଵ ሺy୭, yଵ, x୭, xଵሻ ൈ 
ρ
భ୷ి

୷ా
൨.                      (20) 

The term [ρ୭ଵ
TyC/ρ୭yB] measures the productivity impact of size change that is 

absent from Mେେୈ
ଵ (yo,y1,xo,x1), and corresponds to the movement along T1 from 

(xo,yB) to (x1,yC) in Figure 3. Thus the quantity effect ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ is a measure of 

productivity change, because it includes the impact of size change along with the 
impacts of technical efficiency change and technical change.12  

Substituting expression (20) into expression (12) yields a decomposition of 
ROA change incorporating (and decomposing and augmenting) a theoretical CCD 
productivity index 

πଵ Aଵ⁄

π୭ A୭⁄
ൌ 		 ቈ

	πଵ Rଵ⁄

π୭ଵ R୭ଵ⁄
 ൈ ቈ

D୭ଵሺxଵ, yଵሻ

D୭
୭ሺx୭, y୭ሻ

 ൈ ቈ
D୭୭ሺx୭, y୭ሻ

D୭ଵሺx୭, y୭ሻ
 ൈ ቈ

ρ୭ଵyେ

ρ୭y
 

                                         ൈ ቂ
ሺ୮భ୷భሻ/ሺ୮భ୷భౙሻ

ሺ୮୷ሻ/ሺ୮୷ౙሻ
ቃ ൈ	ቂ

ୖభౙ భ⁄

ୖౙ ⁄
ቃ,																							(21) 

where Rtc = ptTytc, t=o,1. Expression (21) attributes ROA change to price recovery 
change, three components of productivity change, change in capacity utilization and 
change in potential asset turnover. Although capacity utilization change influences 
ROA change, it does so without influencing productivity change. 

 Starting with the first equality in expression (13) leads to a decomposition of 
ROA change in expression (21) built on a comparison period CCD productivity index 
and a size change term measured along comparison period technology. Starting with 
the second equality in expression (13) and following the same procedures generates 
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a decomposition of ROA change built on a base period CCD productivity index and a 
size change term measured along base period technology. Omitting intermediate 
steps, this decomposition is 

πଵ Aଵ⁄

π୭ A୭⁄
ൌ 		 ቈ

	πଵ
୭ Rଵ

୭⁄

π୭ R୭⁄
 ൈ ቈ

D୭ଵሺxଵ, yଵሻ

D୭୭ሺx୭, y୭ሻ
 ൈ ቈ

D୭୭ሺxଵ, yଵሻ

D୭ଵሺxଵ, yଵሻ
 ൈ ቈ

ρଵyୈ

ρଵ
୭y

 

                                         ൈ ቂሺ୮
భ୷భሻ/ሺ୮భ୷భౙሻ

ሺ୮୷ሻ/ሺ୮୷ౙሻ
ቃ ൈ	ቂୖ

భౙ భ⁄

ୖౙ ⁄
ቃ,                  (22) 

 

in which ρଵ
୭ = [(p1- cଵ

୭)/Rଵ
୭]Tyo, Rଵ

୭ = p1yo and yD is located on To in Figure 3. 
Expression (22) decomposes ROA change into price recovery change, a base period 
CCD productivity index, a size change term measured along base period technology, 
change in capacity utilization and change in potential asset turnover. The capacity 
and turnover terms are the same as in expression (21). It is straightforward to 
calculate the geometric mean of expressions (21) and (22) to create an ROA change 
decomposition based on a geometric mean price recovery effect, a geometric mean 
CCD productivity index, and a geometric mean size change effect. 

Kendrick & Grossman (1980) have argued, and demonstrated empirically, that 
productivity change is positively related to change in the rate of capacity utilization at 
the aggregate level. Many subsequent writers concur. Our objective is to introduce 
capacity utilization change as a driver of productivity change in expression (21).  

The key to relating the two is contained in Gold’s expression Y/X = Yc/X × 
Y/Yc, which states that Y/X depends on change in CU, which is nice because a lot of 
empirical evidence supports the linkage, and the sign of the impact of CU change on 
Y/X is indeterminate, which is also nice because it makes pro-cyclicality a testable 

hypothesis. Suppose, as seems reasonable but not certain, that Yc/X ≷ 1 ≷ Y/Yc, so 

that potential productivity and capacity utilization move in opposite directions.  Then 

productivity is pro-cyclical if (Y/Yc) ≷ 1  [(Yc/X) × (Y/Yc)] ≷ 1 and counter-cyclical if 

(Y/Yc) ≷ 1  [(Yc/X) × (Y/Yc)] ≶ 1. Alternatively, if causation moves in the opposite 

direction, productivity is pro-cyclical if (Yc/X) ≷ 1  [(Yc/X) × (Y/Yc)] ≶ 1 and counter-

cyclical if (Yc/X) ≷ 1  [(Yc/X) × (Y/Yc)] ≷ 1. In words, productivity change is pro-

cyclical if CU adjusts more than proportionately to change in potential productivity.13 

Referring to Figure 2, in each period ptTyt/ptTyat = ptTyt/ptTyGJt  ptTyat/ptTyGJt, 
t=o,1, which states that wasted capacity (technical inefficiency) can be expressed as 
the ratio of gross excess capacity to net excess capacity. Change in wasted capacity 
coincides with the technical efficiency change component of the CCD productivity 
index. Following De Borger & Kerstens (2000), we replace the technical efficiency 
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change component of the CCD productivity index with the ratio of gross excess 
capacity to net excess capacity to obtain 

        ቂୈ
భሺ୶భ,୷భሻ

ୈ
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൨ ൈ ୈ

భሺ୶భ,୷భሻ ୈభሺ୶
భ,୷భሻൗ

ୈ
ሺ୶,୷ሻ ୈ

ሺ୶
,୷ሻ⁄

൨ ൈ ቂୈ
ሺ୶,୷ሻ

ୈ
భሺ୶,୷ሻ

ቃ,             (23) 

 

which states that a CCD productivity index can be expressed as the product of 
technical efficiency change relative to PFo(xത

୭) and PF1(xത
ଵ), change in the net rate of 

capacity utilization, and technical change. Substituting expression (23) into 
expression (19) yields 
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ρ
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൨,		 (24) 

which decomposes actual productivity change into change in net capacity utilization 
and potential productivity change (the CCD productivity index analogue to Yc/X). 
Gold’s expression (8) is embedded in expressions (23) and (24), in theoretical index 
number form. Finally, substituting expression (24) into expression (21) yields the 
complete CCD decomposition of ROA change 

πଵ Aଵ⁄

π୭ A୭⁄
ൌ 		 ቈ

	πଵ Rଵ⁄

π୭ଵ R୭ଵ⁄
 ൈ	ቈ

D୭ଵ൫x
ଵ, yଵ൯

D୭୭൫x
୭, y୭൯

 ൈ ቈ
D୭ଵሺxଵ, yଵሻ D୭ଵ൫x

ଵ, yଵ൯ൗ

D୭୭ሺx୭, y୭ሻ D୭୭൫x
୭, y୭൯⁄

 ൈ ቈ
D୭୭ሺx୭, y୭ሻ

D୭ଵሺx୭, y୭ሻ
	 

                             ൈ 
ρ
భ୷ి

ρ
୷ా

൨ 	ൈ ቂ
ሺ୮భ୷భሻ/ሺ୮భ୷భౙሻ

ሺ୮୷ሻ/ሺ୮୷ౙሻ
ቃ ൈ	 ቂ

ୖభౙ భ⁄

ୖౙ ⁄
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which attributes ROA change to price change, potential productivity change, change 
in the rate of capacity utilization, and change in potential asset turnover. Change in 
capacity utilization plays a dual role, as an independent driver of ROA change, and 
as a driver of potential productivity change, which in turn drives ROA change. A 
similar decomposition can be derived from expression (22), and the geometric mean 
of expression (25) and the decomposition based on expression (22) can be 
calculated.14 

5.2 The Empirical Index Number Strategy 

Expressions (23) – (25) use a pair of augmented CCD productivity indexes to 
interpret the quantity effect as a productivity effect, on the assumption that cost 
allocation is feasible. Although these expressions do provide an augmented CCD 
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productivity index interpretation of the quantity effect, they do not provide an 
analogous interpretation of the price recovery effect. This requires empirical quantity-
based and price-based indexes. 

 A few mathematical manipulations enable us to write the price recovery effect 
in the first equality of expression (13) as  

 ቂ
	πభ ୖభ⁄

π
భ ୖ

భ⁄
ቃ = 

భ

ୖభି	ሺ
ౌౌ
ౌ

ሻ୵భ୶భ
 ,                  (26) 

in which PP/WP is a quantity-based Paasche price recovery index, with ቂ
	πభ ୖభ⁄

π
భ ୖ

భ⁄
ቃ ⋛ 1 

 PP/WP ⋛ 1. Expression (26) contains comparison period and base period prices, 

but only comparison period quantities, and shows the contribution of PP/WP to profit 
margin change.  

We follow the same strategy to write the quantity effect in the first equality of 
expression (13) as  

 ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ 	ൌ 	

π
భ

ୖ
భି	ሺ

ౕై
	ై

ሻ୵୶భ
 ,                                (27) 

in which YL/XL is a price-based Laspeyres productivity index, with ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ ⋛ 1  

YL/XL ⋛ 1. Expression (27) contains comparison period and base period quantities, 

but only base period prices, and shows the contribution of YL/XL to profit margin 
change.  

Substituting expressions (26) and (27) into expression (12) yields a 
decomposition of ROA change based on empirical price and quantity indexes        
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ୖౙ ⁄
ቃ,                  (28) 

which attributes ROA change to price change, productivity change, change in 
capacity utilization and change in potential asset turnover. The difference between 
expressions (25) and (28) is that the augmented CCD productivity index 
decomposes by economic driver, while the Paasche price recovery index and the 
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Laspeyres productivity index decompose by variable. In both expressions price 
recovery change, productivity change and change in the rate of capacity utilization 
exert independent influences on ROA change. Change in the rate of capacity 
utilization is a driver of productivity change in expression (25), but not in expression 
(28). We explore this relationship next.  

The key to relating productivity change to capacity utilization change is, as in 
Section 5.1, Gold’s expression Y/X = Yc/X × Y/Yc. If the quantity indexes Y, Yc and X 
are empirical indexes we can write 
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 ,                                (29) 

where p and w can be base period or comparison period price vectors. The first term 
on the right side of expression (29) is Yc/X and the second is Y/Yc. The second 
equality rewrites and clarifies the capacity utilization change term. Expression (29) is 
interpreted exactly as Gold’s expression (8), in empirical index number form. 
Substituting a Laspeyres version of expression (29) into expression (27) yields 
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which expresses actual productivity change in terms of change in capacity utilization 
and potential productivity change. Substituting expression (30) into expression (28) 
yields 
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which attributes ROA change to price recovery change, productivity change, change 
in the rate of capacity utilization and change in potential asset turnover. Change in 
the rate of capacity utilization appears twice, as an independent driver of ROA 
change, and as a driver of productivity change.  

 The first equality in expression (13) generates a Paasche price recovery effect 
and a Laspeyres quantity index that eventually make their way into the ROA change 
decomposition in expression (31). We now return to the second line, in which the first 
term is a price recovery effect and the second term is a quantity effect. It is easy to 
manipulate the two effects to generate 
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which is a Laspeyres price recovery effect in which PL/WL is a Laspeyres price 

recovery index, with ቂ
భ
 ୖభ

⁄

 ୖ⁄
ቃ ⋛ 1  PL/WL ⋛ 1.15 Similarly, 
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which is a Paasche productivity effect in which YP/XP is a Paasche productivity index, 

with ቂ
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expression into expression (33), and replacing the price and quantity effects in 
expression (31) with those in expressions (32) and (33) generates 
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which is an alternative decomposition of ROA change based on a Laspeyres price 
recovery recovery index and a Paasche productivity index with capacity utilization 
appearing twice. 
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 Taking the geometric mean of expressions (26) and (32) generates a Fisher 
price recovery effect, and taking the geometric mean of expressions (27) and (33) 
generates a Fisher productivity effect. It does not, however appear possible to 
express the Fisher price recovery effect in terms of PF/WF or the Fisher productivity 
effect in terms of YF/XF. 

The quantity vectors needed to implement the ROA change decompositions in 
expressions (31) and (34) (and also in expression (25) in Section 5.1) are either 
observed (y1,yo,x1,xo) or solutions to optimization problems specified above (yc1,yco). 
All that is required is to specify a functional form for the index numbers in 
expressions (31) and (34) (and specify base period or comparison period technology 
and conditioning variables for the distance functions in expression (25) in Section 
5.1). The two decompositions are interpreted in exactly the same way; the only 
difference is that one uses distance functions and the other uses prices to 
decompose productivity change and to measure change in capacity utilization. 
 
 
6. External Capacity Constraints 
 

Thus far we have treated capacity utilization as a short run phenomenon 
created by a fixed input constraint x 		xത or by a weaker fixed input expenditure 

constraint C  Cത. These capacity constraints are internal to the firm. However firms 
also face external capacity constraints that have financial consequences. Mining 
firms are constrained by health, safety and environmental regulations, by weather 
conditions, by a lack of social infrastructure (e.g., housing and schools), and also by 
inadequate transport infrastructure that inhibits their ability to move minerals to ports 
to satisfy demand in a timely fashion.16 Fishers are constrained by a variety of fishery 
management policies intended to limit catch in a fishery in pursuit of maximum 
economic yield. Input-oriented policies constrain fisher fixed input use, or “effort,” 
and output-oriented policies impose total allowable catch (TAC) limits on the fishery, 
often combined with individual transferrable quota (ITQ) allocation among fishers.17 
In both industries external capacity constraints may make at least some internal 
capacity constraints redundant for at least some firms at least some of the time.18  

Figure 4, a simultaneously simplified and augmented version of Figure 2, 
illustrates the potential impact of external capacity constraints. Two internal frontiers, 
PF(x) and PF(xത), remain, and the third internal frontier, PF(xത,xv

v) remains as well, 
but for expositional simplicity is replaced by a new external frontier PF(Z). The three 
internal frontiers are interpreted as before. The external frontier PF(Z) represents the 
collective impacts of industry management practices and regulations, supply chain 
bottlenecks and other production-limiting capacity constraints unrelated to xത or Cത.  

Using the output maximization framework of Gold and Johansen, output 
vector y has wasted capacity pTy/pTya and excess capacity pTya/pTyGJ. It also has 
over-capacity pTyGJ/pTyE. In mining overcapacity may be due to the transport 
infrastructure constraint, and in fishing it may be due to the imposition of TAC and 
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ITQ. The interpretation is similar in the revenue maximization and variable profit 
maximization frameworks, although yE would not be a revenue maximizing or profit 
maximizing output mix given output price vector p. Since P(Z)  P(xത), the internal 
capacity constraints associated with the output maximization and revenue 
maximization frameworks are rendered redundant by Z. The external capacity 
constraints have eliminated overcapacity by reducing capacity, thereby increasing 
capacity utilization from pTy/pTyGJ to pTy/pTyE. PF(Z) is not a neutral contraction of 
PF(xത), and may constrain some outputs proportionally more than others. PF(Z) may 
also constrain some firms more than others, inducing exit by relatively weak forms 
that creates a more efficient industry structure. 
 
 
7. Summary and Conclusions 
 

Change in the financial health of a business depends on trends in its price 
recovery, its productivity, its rate of capacity utilization, and in the external capacity 
constraints it faces. We have developed a pair of analytical frameworks with which to 
examine the relationship between change in financial health and its four drivers. We 
measure financial health with return on assets, and both analytical frameworks begin 
with the duPont triangle. The first framework exploits a theoretical productivity index, 
and the second is based on empirical price and quantity index numbers. Both 
frameworks provide valuable information to management concerning the likely 
sources of changes in its financial performance. The two frameworks have offsetting 
strengths. The first does not require price information, and decomposes the 
productivity effect into three economic drivers of productivity change, technical 
efficiency change, technical change, and size change. The second framework 
decomposes both the productivity effect and the price recovery effect into the 
contributions of individual quantity changes and price changes. The second does not 
require cost allocation, and it is calculated rather than estimated, so it does not face 
a degrees of freedom constraint. Both frameworks include change in capacity 
utilization twice, once as an independent driver of ROA change and again as a driver 
of productivity change. We also show how external capacity constraints influence 
capacity output.  
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Figure 1  The duPont Triangle at Rio Tinto 
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Figure 2  Capacity and its Rate of Utilization 

 

 

  



21 
 

 

 

 

 

 

Figure 3 Output-Oriented Productivity Effect Decomposition 
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Figure 4  Internal and External Capacity Constraints 
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1 Source: http://au.advfn.com. 
2 Chandler (1962) and Johnson (1975, 1978) detail the development and use of the ROA 
triangle at duPont and GM. 
3 Gold and Johansen proposed virtually identical physical definitions of yc, and their definition 
of yc was given a managerial slant akin to the use of standard volume at GM. Gold 
emphasized “practically sustainable capacity,” determined by “the customary number of 
shifts and the normally acceptable length of work day and work week,” and with allowance 
made for breakdowns, repairs and maintenance. Johansen conditioned his definition on the 
assumption that the firm is “operating under normal conditions with respect to number of 
shifts, hours of work etc.”   
4 The United Nations Food and Agriculture Organization (FAO) (2000) has endorsed the 
physical measure of capacity utilization proposed by Gold and Johansen, in part due to the 
shortage of reliable information on output and variable input prices. 
5 Segerson & Squires justify a revenue maximization objective on the grounds that in the 
short run all inputs are quasi-fixed, so that x = x. Their CU analysis is based on a dual 
shadow price approach. 
6 If M=1 the solution to the variable profit maximization problem is very similar to the solution 
to the short run average cost minimization problem proposed by Klein (1960) and Berndt & 
Morrison (1981) and widely used in the fisheries literature. Sources of the difference are (i) 
price  minimum short run average cost and (ii) minimum short run average cost  minimum 
short run average variable cost. An overlooked definition of full capacity output was 
proposed by de Leeuw (1962), who defined capacity output as that level of output at which 
short run marginal cost exceeds minimum short run average cost by some percent, the logic 
being that at that output level marginal cost is well above minimum average cost, signalling 
upward pressure on output price.  
7 The theory of cost indirect and return indirect production was developed by Shephard 
(1974). Empirical applications are regrettably rare. A fixed cost indirect capacity utilization 
measure was proposed by Färe et al. (2000).  
8 Schultze (1963) summarizes the theory behind and evidence for the argument that 
changes in capacity utilization influence productivity change and profit margin change. 
9 It does not appear possible to implement decomposition (13) into pure price and quantity 
effects using Edgeworth-Marshall arithmetic mean price and quantity vectors (pത,wഥሻ and (yത, xതሻ  
because this introduces three pairs of price vectors (po,wo), (p1,w1) and (pത,wഥ ), and three pairs 
of quantity vectors (yo,xo), (y1,x1) and (yത, xത). 
10 Cost allocation is a contentious issue. Allocating operating cost is feasible, although the 
allocation may not be optimal, but allocating overhead cost is difficult; Shubik (2011) calls it 
an open problem in economic theory and accounting. Estache & Grifell-Tatjé (2011) 
compromise by ignoring overhead cost, or general expenses, and allocating operating cost 
to three activities in a sample of Mali water utilities. 
11 Although the CCD productivity index is not in Y/X form, we can calculate MCCD(y,x) and 
Mେେୈ
ୡ (yc,x) and define change in capacity utilization residually as MCCD(y,x)/Mେେୈ

ୡ (yc,x). 
12 Expression (20) augments the CCD productivity index with what we call a size change 
term, in an effort to introduce a size-related driver of productivity change that might capture 
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the joint impacts of economies of scale and diversification. Our effort has several 
antecedents; Färe et al. (1994), Ray & Desli (1997) and Grifell-Tatjé & Lovell (1999) all 
augment the CCD productivity index, which ignores the potential impact of size change on 
productivity change, with a size change term, although these terms differ. 
13 The indexes Y, Yc and X, and therefore Y/X, Yc/X and Y/Yc, must equal unity in the base 
period. Thus, for example, CU grows or shrinks from an initial value of unity. However we 
observe or solve for the underlying output quantity vectors. This allows us to calculate CUm

t 
= ym

t/ym
ct, m=1,…,M, t=o,1, for each output individually, or we can calculate an aggregate 

price-dependent measure CUt = Rt/Rct = ptTyt/ptTyct.  
14 We base our decompositions on a CCD productivity index. We prefer to decompose the 
Malmquist productivity index proposed by Bjurek (1996), in part because it is in Y/X form. 
This index decomposes as 

 
ୈሺ୶,୷భሻ ୈሺ୶,୷ሻ⁄

ୈሺ୷,୶భሻ ୈሺ୷,୶ሻ⁄
 = 

ୈሺ୶,୷ౙభሻ ୈሺ୶,୷ౙሻ⁄

ୈሺ୷,୶భሻ ୈሺ୷,୶ሻ⁄
 × 

ୈሺ୶,୷భሻ ୈሺ୶,୷ౙభሻ⁄

ୈሺ୶,୷ሻ ୈሺ୶,୷ౙሻ⁄
 , 

where DI(y,x) is an input distance function. The first term on the right side is Yc/X and the 
second is Y/Yc. Unfortunately it does not appear possible to link this productivity index with 

the quantity effect ቂ
π
భ ୖభ⁄

π ୖ⁄
ቃ.                             

15 Frankel (1963) recommends use of Paasche quantity indexes (and, to satisfy the product 
test, Laspeyres price indexes) because, being based on comparison period weights, they 
are better suited to a company’s current needs than are the more popular Laspeyres 
quantity indexes. 
16 Mining Australia reports that floods in 2011 reduced Queensland’s coal exports by 20%. 
http://www.miningaustralia.com.au/news/qld-flood-damage-confirmed. Pincus & Ergas 
(2008) analyze Australian mining supply infrastructure bottlenecks, due in part to diffuse and 
uncoordinated ownership of port terminals, tracks and rolling stock. They cite a study 
commissioned by the Queensland government that estimated that revenues in excess of a 
billion AUD per year were being sacrificed to inefficiencies in a single coal supply chain. 
17 Squires et al. (2010) provide evidence on the capacity-reducing and distributional impacts 
of TAC and ITQ in the British Columbia halibut fishery. 
18 Overcapacity in a fishery results from lack of ownership, which creates a tragedy of the 
commons; external capacity constraints such as TAC and ITQ are intended to create 
property rights and alter fisher incentives. Overcapacity in mining results from the opposite 
problem, diffuse and uncoordinated ownership of links in the transport infrastructure. 
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Abstract

We explore the effect of balancing unbalanced panel data when estimating primal

productivity indices using non-parametric frontier estimators. First, we explore a

series of pseudo-solutions aimed at making an unbalanced panel balanced. Then,

we discuss some intermediate solutions (e.g., balancing 2-years by 2 years). We

empirically illustrate these issues comparing both Malmquist and Hicks-Moorsteen

productivity indices. Furthermore, we link this problem with a variety of litera-

tures on infeasibilities, statistical inference of non-parametric frontier estimators,

and the index theory literature focusing on the dynamics of entry and exit in indus-

tries. Finally, we draw up a list of remaining issues that could benefit from further

exploration.

Keywords: Malmquist productivity index, Hicks-Moorsteen productivity index, Balan-

ced panel, Unbalanced panel.

1 Introduction

Traditionally, Total Factor Productivity (TFP) growth is estimated by the traditional

Solow residual and yields an index number representing technology shifts from output

growth that remains unexplained by input growth (see Hulten (2001) or Van Beveren

(2010)). In the last decades, economists have become conscious that ignoring inefficiency

may well bias TFP measures. Nishimizu and Page (1982) is probably the seminal article

∗CNRS-LEM (UMR 8179), IESEG School of Management, 3 rue de la Digue, F-59000 Lille, France.
k.kerstens@ieseg.fr, Corresponding author.
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suggesting to decompose TFP into a technical change component as well as a technical

efficiency change component. Caves, Christensen, and Diewert (1982) have analysed

discrete time Malmquist input, output and productivity indices using distance functions

as general technology representations. Since these Malmquist indices require a precise

knowledge on the technology, these authors relate Malmquist and Törnqvist productivity

indices, the latter depending on both price and quantity information (without need of

exact knowledge on the technology).

Integrating the two-part Nishimizu and Page (1982) decomposition of TFP, Färe,

Grosskopf, Norris, and Zhang (1994) propose to estimate the output distance functions

in the Malmquist output productivity index by exploiting their inverse relation with the

radial output efficiency measures evaluated relative to multiple input and output non-

parametric technologies. Meanwhile, parametric estimates of the underlying distance

functions of this Malmquist productivity index approach have also been reported in the

literature (see, e.g., Atkinson, Cornwell, and Honerkamp (2003) or Tsekouras, Pantzios,

and Karagiannis (2004)). Bjurek (1996) offers an alternative Hicks-Moorsteen TFP in-

dex, defined as a ratio of a Malmquist output over a Malmquist input index (see also

O’Donnell (2010) and O’Donnell (2012a)). Finally, it is good to indicate that these pri-

mal productivity indices have become relatively popular in empirical work in comparison

with more traditional TFP measures.

This paper concentrates on a seemingly rather widespread misconception that these

primal productivity indices require balanced panel data and cannot cope with unbalan-

cedness. Just to cite one example, Hollingsworth and Wildman (2003) state that “DEA

based Malmquist techniques are unable to cope with unbalanced panel estimation proce-

dures” (page 497). One reason for such beliefs could be that some of the popular software

options around to compute these productivity indices cannot handle unbalanced panels.

For instance, the still popular DEAP software of Coelli (1996) explicitly requires a balan-

ced panel (see p. 31 of the manual). Another example of the same explicit requirement is

the R-package “Nonparaeff” (version 0.5-3: page 14). Such software restrictions may in-

duce people to believe balanced panels are a prerequisite for this Malmquist productivity

index approach. This is to some extent surprising given that some of the seminal articles

in the literature on the Malmquist productivity index have clearly pointed out that the

use of an unbalanced panel is possible, “although the index will be undefined for missing

observations” (see fn 14 on page 73 of Färe, Grosskopf, Norris, and Zhang (1994)).

While the notion of a potential unbalancedness bias due to unplanned missing data

is quite standard in the statistical literature (see, e.g., Baltagi and Song (2006) or Frees

(2004)), to the best of our knowledge nobody has so far analysed the extent of the dif-

ferences between computing primal productivity indices using balanced and unbalanced
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panel data. In this contribution, we intend to systematically start exploring the conse-

quences of computing these primal productivity indices using a balanced panel when

initially an unbalanced panel data set is available. In particular, this paper is structu-

red as follows. Section 2 provides some basic definitions of the technology, and of the

Malmquist productivity index as well as the Hicks-Moorsteen TFP index. Section 3 of-

fers a structured overview of different “solutions” advanced in the literature to cope with

unbalanced panel data when computing these primal productivity indices. We argue

against most of these pseudo-solutions. In Section 4, the effect of the balancedness or

unbalancedness of the sample is illustrated using an existing data set. The final Section

5 concludes and outlines future research issues.

2 Definitions of Technology and Primal Productivity

Indices

We first introduce the assumptions on technology and the definitions of the required

distance functions. The latter provide the components for computing the primal produc-

tivity indices.

2.1 Technology and Distance Functions

A production technology describes how a vector of inputs x = (x1, . . . , xn) ∈ Rn
+ is

transformed into a vector of outputs y = (y1, . . . , yp) ∈ Rp
+. For each time period t, the

production possibility set (or technology for short) T t summarises the set of all feasible

vectors of input and output. It is defined as follows:

T t =
{

(xt, yt) ∈ Rn+p
+ : xt can produce yt

}
. (1)

Throughout this contribution, technology is assumed to satisfy the following conven-

tional assumptions:

(T.1) (0, 0) ∈ T t, (0, yt) ∈ T t ⇒ yt = 0.

(T.2) The set A(xt) = {(ut, yt) ∈ T t : ut ≤ xt} of dominating observations is bounded

∀xt ∈ Rn
+.

(T.3) T t is closed.

(T.4) ∀(xt, yt) ∈ T t : (xt,−yt) ≤ (ut,−vt) and (ut, vt) ≥ 0 implies that (ut, vt) ∈ T t.
The first axiom creates the possibility of inaction and also states that there is no free

lunch. The second axiom of boundedness (i.e., infinite outputs can not be obtained

3



from a finite input vector) is just a mathematical regularity condition, as is closedness of

technology assumed in the third axiom. The fourth axiom of strong disposal of inputs

and outputs implies that fewer outputs can always be produced with more inputs, and

inversely.

Sometimes, the following two additional axioms are assumed in various combinations

with the preceding ones as well:

(T.5) T t is a convex set.

(T.6) δT t ⊆ T t,∀δ > 0.

Convexity of technology in the fifth axiom allows for linear combinations of activities to

remain feasible. The sixth axiom imposes constant returns to scale rather than a more

flexible variable returns to scale hypothesis that is traditionally maintained.

Efficiency is estimated relative to technologies using distance or gauge functions. Dis-

tance functions are related to the efficiency measures defined by Farrell (1957). In general,

the Farrell efficiency measure Et(x
t, yt) is defined as the inverse of the Shephardian dis-

tance function. In the input-orientation, this Farrell efficiency measure Ei
t(x

t, yt) indicates

the minimum contraction of an input vector by a scalar λ while still remaining on the

boundary of the technology:

Ei
t(x

t, yt) = inf
λ

{
λ : (λxt, yt) ∈ T t, λ ≥ 0

}
. (2)

In the output-orientation, the Farrell efficiency measure Eo
t (x

t, yt) searches for the maxi-

mum expansion of the output vector by a scalar θ to the boundary of the technology:

Eo
t (x

t, yt) = sup
θ

{
θ : (xt, θyt) ∈ T t, θ ≥ 1

}
. (3)

For all (a, b) ∈ {t, t + 1}2, the time-related versions of the Farrell input efficiency

measure are given by

Ei
a(x

b, yb) = inf
λ

{
λ : (λxb, yb) ∈ T a

}
(4)

if there is some λ such that (λxb, yb) ∈ T a and Ei
a(x

b, yb) = +∞ otherwise. Similarly,

in the output case, Eo
a(x

b, yb) = sup
θ

{
θ : (xb, θyb) ∈ T a

}
if there is some θ such that

(xb, θyb) ∈ T a and Eo
a(x

b, yb) = −∞ otherwise.
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2.2 Malmquist Productivity Index

Following Caves, Christensen, and Diewert (1982), using the input Farrell measures one

can define the input-oriented Malmquist productivity index in base period t as follows:

M i
t (x

t, yt, xt+1, yt+1) =
Ei
t(x

t, yt)

Ei
t(x

t+1, yt+1)
. (5)

Values of this base period t input-oriented Malmquist productivity index below (above)

unity reveal productivity growth (decline).

Similarly, a base period t+ 1 input-oriented Malmquist productivity index is defined

as follows:

M i
t+1(xt, yt, xt+1, yt+1) =

Ei
t+1(xt, yt)

Ei
t+1(xt+1, yt+1)

. (6)

Again, values of this base period t+1 input-oriented Malmquist productivity index below

(above) unity reveal productivity growth (decline).

To avoid an arbitrary selection among base years, the input-oriented Malmquist pro-

ductivity index is defined as a geometric mean of a period t and a period t+ 1 index:

M i
t,t+1 =

√
M i

t ·M i
t+1, (7)

whereby the arguments of the functions are suppressed to save space. Note again that

when the geometric mean input-oriented Malmquist productivity index is smaller (larger)

than unity, it points to a productivity growth (decline).

2.3 Hicks-Moorsteen Productivity Index

Following the seminal article by Bjurek (1996), a Hicks-Moorsteen productivity (or Malm-

quist TFP) index with a base period t is defined as the ratio of a Malmquist output

quantity index in base period t over a Malmquist input quantity index in the same base

period t:

HMt(x
t, yt, xt+1, yt+1) =

MOt(x
t, yt, yt+1)

MIt(xt, xt+1, yt)
(8)

whereby the output quantity index is defined as MOt(x
t, yt, yt+1) =

Eo
t (xt,yt)

Eo
t (xt,yt+1)

and the

input quantity index is defined as MIt(x
t, xt+1, yt) =

Ei
t(x

t,yt)

Ei
t(x

t+1,yt)
. If the Hicks-Moorsteen

productivity index is larger (smaller) than unity, then it indicates a gain (loss) in pro-

ductivity.
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Similarly, a base period t+1 Hicks-Moorsteen productivity index is defined as follows:

HMt+1(xt, yt, xt+1, yt+1) =
MOt+1(xt+1, yt+1, yt)

MIt+1(xt, xt+1, yt+1)
(9)

where we now have for the output quantity index MOt+1(xt+1, yt+1, yt) =
Eo

t+1(xt+1,yt)

Eo
t+1(xt+1,yt+1)

and for the input quantity index MIt+1(xt, xt+1, yt+1) =
Ei

t+1(xt,yt+1)

Ei
t+1(xt+1,yt+1)

. Again, when the

Hicks-Moorsteen productivity index is larger (smaller) than unity, it points to a produc-

tivity gain (loss).

To avoid a choice of base year, it is customary to take a geometric mean of these two

Hicks-Moorsteen productivity indices (see Bjurek (1996)):

HMt,t+1 =
√
HMt ·HMt+1, (10)

where arguments of the functions are suppressed for reasons of space. Note once more

that when the geometric mean Hicks-Moorsteen productivity index is larger (smaller)

than unity, it points to a productivity gain (loss).

A final observation can be made. The denominator of both the Malmquist output and

input quantity indices in the base period t Hicks-Moorsteen productivity index compares

a “hypothetical” or pseudo-observation consisting of inputs and outputs observed from

different periods to a technology in period t. The same remark applies to the numerator

for the corresponding Malmquist output and input quantity indices in base period t+ 1.

Such “hypothetical” observations do not appear in the Malmquist productivity index,

which makes for a somewhat easier interpretation.

2.4 Primal Productivity Indices: A Comparison

We end with some remarks regarding the relative popularity as well as the properties of

both these primal productivity indices (see also O’Donnell (2012a) for more details).

First, the Malmquist productivity index has recently become very popular. By

contrast, the Hicks-Moorsteen productivity index has so far found rather limited use

in applied research (e.g., Arora and Arora (2012), Nemoto and Goto (2005), O’Donnell

(2012b), O’Donnell (2012a) or Zaim (2004)).

Second, both ratio-based productivity indices can be related to one another under

rather stringent conditions. Indeed, an analytical relation is established in Färe, Gross-

kopf, and Roos (1996): both indices coincide under constant returns to scale and inverse

homotheticity. Empirical studies comparing both indices are extremely rare: for example,
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Bjurek, Førsund, and Hjalmarsson (1998) report minor differences between both indices.

This limited empirical evidence could be taken as an indication that the conditions on

technology under which both indices coincide do not seem to hold exactly.

Third, one well-known pitfall of the Malmquist productivity index is that it is not al-

ways a TFP index. For instance, while its TFP properties are maintained under constant

returns to scale, as illustrated by Grifell-Tatjé and Lovell (1995), these are not preser-

ved in the presence of variable returns to scale (i.e., a more general technology). By

contrast, already Bjurek (1996) states that the Hicks-Moorsteen productivity index has

a TFP interpretation. More recently, O’Donnell (2010) shows that profitability change

can be decomposed into the product of a total factor productivity (TFP) index and an

index measuring relative price changes. Many TFP indices can be decomposed into mea-

sures of technical change and technical efficiency change (following Nishimizu and Page

(1982)), but furthermore into scale efficiency change and mix efficiency change compo-

nents. Indices that can be decomposed in this way include the Fisher, Törnqvist and

Hicks-Moorsteen TFP indices, but not the Malmquist productivity index. In fact, Gross-

kopf (2003) suggests to call the Malmquist productivity index a technology index. In

other words, it just measures local technical change, not TFP change.

Fourth, another problem known since the beginning of this literature is that some

of the distance functions constituting the Malmquist productivity index may well be

undefined when estimated using general technologies (see Färe, Grosskopf, Norris, and

Zhang (1994), footnote 15). However, empirical studies often ignore reporting on this

infeasibility problem. Briec and Kerstens (2009) prove that infeasibilities can occur for

an even more general productivity indicator based upon more general distance functions.

Thus, even this more general indicator does not satisfy the determinateness property

in index theory. By contrast, the Hicks-Moorsteen index satisfies the determinateness

axiom, as conjectured by Bjurek (1996) and proven in Briec and Kerstens (2011) under

mild conditions (i.e., mainly strong disposability of inputs and outputs).1

Fifth, as mentioned in the introduction, both these primal productivity indices can be

computed on balanced and unbalanced panel data alike. However, in view of the preceding

remark it is critical to distinguish between an infeasibility due to unavailable data (e.g.,

related to the unbalanced nature of the panel) and a computational infeasibility. The

former case could probably better be called a logical impossibility because one simply

cannot measure the adjacent period efficiency measures.

Overall, the TFP nature of the Hicks-Moorsteen index and the fact that it can easily be

1Zaim (2004) employs a Hicks-Moorsteen index to measure environmental performance imposing weak
disposal in the bad outputs that are jointly produced with the good outputs. Not entirely surprisingly,
he reports some infeasibilities for this Hicks-Moorsteen environmental performance index.
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made transitive (underscored by O’Donnell (2012b)) make it undoubtedly deserve greater

attention. Transitivity allows for meaningful multi-lateral and multi-temporal instead of

only binary comparisons. The reader is referred to O’Donnell (2012b) for more details

on the economically-relevant axioms a suitable choice of base for the Hicks-Moorsteen

index can yield. This assessment echoes the conclusion earlier made by Lovell (2003) in

the same context.

3 Treatments for Unbalanced Panel Data and Cri-

tiques

One basic strategy found in the empirical literature employing these primal productivity

indices consists in making the unbalanced panel somehow balanced. In fact, a variety of

strategies can be discerned in the literature.

First, a straightforward strategy consists in simply dropping the observations that are

not balanced. One example -already cited- is the article by Hollingsworth and Wildman

(2003). Other examples of studies seemingly applying this strategy include Matthews

and Zhang (2010) or Sturm and Williams (2004), among others.

Second, sometimes a kind of natural remedy is employed to make the unbalanced

panel a balanced one. One example is the backward merger of units: units that merge

at some point in time are also treated as merged for the years in the sample preceding

the year of the merger. An example of a study adopting this remedy is Tortosa-Ausina,

Grifell-Tatjé, Armero, and Conesa (2008).

Third, alternatively some authors resort to a more artificial remedy to make the

initially unbalanced panel balanced. One example is the creation of artificial units in an

effort to make the panel balanced. One study implementing such approach is Hongliang

and Pollitt (2009).

Other strategies are more elaborate and involve some kind of partial balancing of

the data set. For instance, one kind of intermediate solution found in the literature is

to balance on a 2-years by 2-years basis. In such a setting, all firms present in each

of the adjacent two-year comparison periods (the adjacent-year sample) are maintained

(see, e.g., Cummins and Rubio-Misas (2006) for an empirical paper). More in general,

one can note that some proposals to average these productivity indices over a variety of

base periods are at least partially motivated by the desire to accommodate the case of

unbalancedness in panel data (for instance, Asmild and Tam (2007)).

It is well-known that unbalancedness can occur due to delayed entry, early exit, or
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intermittent nonresponse. Another important distinction is that the lack of balance can

be either planned (designed) as, for instance, in the case of rotating panels, or unplanned.

In the latter unplanned case, non-responses are called missing data and these represent

a potential source of bias. This is in particular the case in situations in which the

mechanisms for missingness are related to the phenomenon being modelled (i.e., attrition

bias). See Baltagi and Song (2006) or Frees (2004) for more details.

In the context of productivity measurement, attrition bias is a known issue (Van Beve-

ren (2010) offers a survey of estimation issues) and it has regularly been reported in some

parts of the literature (see, e.g., Foster, Haltiwanger, and Syverson (2008) for a recent

example).2 However, unbalancedness is in practice an unknown mix of unplanned and

planned elements. Furthermore, the exact reason for the missing data (i.e., delayed entry,

early exit, or intermittent nonresponse) is rarely known to the empirical researcher. If

the exact reason for the missing data is known to the analyst, then it seems obvious that

one should exploit this knowledge to measure the contribution of entering and exiting

firms to productivity growth (see Griliches and Regev (1995) or more recently Diewert

and Fox (2010)).

In general, it would seem useful to at least document the eventual impact of unbalan-

cedness versus balancedness in productivity measurement. Only when the impact would

be negligible, one could envision ignoring the issue. In the next section, we turn to this

empirical exercise.

4 Data, Methodology, and Empirical Illustration

In this section, we first present the sample used for the empirical illustration. Then, we

present the various technologies employed to compute the efficiency measures underlying

both the Malmquist and Hicks-Moorsteen productivity indices. Thereafter, we provide

the empirical results.

4.1 Data Description

The data base for this empirical part is a rather short unbalanced panel of three years

(1984-1986) of French fruit producers based on annual accounting data collected in a

survey (see Ivaldi, Ladoux, Ossard, and Simioni (1996) for details). Farms are selected

on mainly two criteria: (i) the production of apples must be positive, and (ii) the acreage

2However, we are unaware of any article reporting attrition bias while employing the primal produc-
tivity indices analysed in this study. Byrnes (1991) is the only study we are aware of explicitly analysing
selectivity bias in an efficiency context.
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of the orchard must be at least five acres. As a description of technology, three aggregate

inputs produce two aggregate outputs. The three inputs are: (i) capital (including land),

(ii) labour, and (iii) materials. The two aggregate outputs are (i) the production of

apples, and (ii) an aggregate of alternative products. For all three inputs, also input

prices are available.

In total, 184 farms are available in the data base of which 130, 135 and 140 have

records in 1984, 1985 and 1986, respectively. Thus, the unbalanced panel contains 405

observations in total. The balanced panel, containing only those farms for which records

are available for all years, consists of only 92 farms. This yields an overall total of 276

observations. Thus, imposing balancedness amounts to eliminating about 32% of the

information in the sample. Further summary statistics for all observations and details on

the definitions of all variables are available in Appendix 2 in Ivaldi, Ladoux, Ossard, and

Simioni (1996).

4.2 Specifications of Technologies for the Efficiency Computa-

tions

For the empirical application, we employ a variety of non-parametric technologies. In

particular, we use both convex and non-convex technologies and both constant and va-

riable returns to scale assumptions. Let K be the number of units. A unified algebraic

presentation for a technology satisfying some combination of the above axioms is:

TΛ,Γ =

{
(x, y) ∈ Rn+p

+ : yi ≤
K∑
k=1

δzkyki, (i = 1, . . . , p),

K∑
k=1

δzkxkj ≤ xn, (j = 1, . . . , n), z ∈ Λ, δ ∈ Γ

}
,

where Λ ∈ {C,NC}, with C = {z ∈ RK
+ :
∑K

k=1 zk = 1} and NC = {z ∈ RK
+ :
∑K

k=1 zk =

1 and ∀k = 1, . . . , K : zk ∈ {0, 1}}, and where Γ ∈ {CRS, V RS}, with CRS = R+ and

V RS = {1}.

From activity analysis, z is the vector of activity variables that indicates the intensity

at which a particular activity is employed in constructing the reference technology by

forming convex or non-convex combinations of observations constituting the best practice

frontier (see Briec, Kerstens, and Vanden Eeckaut (2004)).

Axioms (T.1)-(T.4) are maintained in the non-convex case, while the convex case also

imposes (T.5). In addition, both these technologies can impose constant returns to scale

(T.6) rather than flexible returns to scale. This unified specification is non-linear, but
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it can be straightforwardly linearised in the convex case. For the non-convex case, it

basically involves solving either some non-linear mixed integer programs, or some scaled

vector dominance algorithms.

4.3 Empirical Results for the Primal Productivity Indices

Table 1 contains basic descriptive statistics for both the Malmquist and Hicks-Moorsteen

productivity indices with the balanced and unbalanced panel data and using several

technologies. This table is structured as follows: (i) The first four columns list the

Malmquist, the last four columns report the Hicks-Moorsteen results. (ii) Within the

latter distinction, the first two columns always contain the results for the unbalanced

panel, while columns three and four each time display the balanced panel results. (iii)

Horizontally, we first distinguish between convex and non-convex technologies. (iv) Then,

we separately report both constant and variable returns to scale assumptions imposed on

a given technology.

Computation of these descriptive statistics is performed over the productivity indices

available. To give an example, the Malmquist index for the unbalanced panel results

in valid results for 110 farms for the period 1984-85. Consequently, all corresponding

descriptive statistics are computed for these 110 valid results. Obviously, due to a-

priori removal of data, the number of valid results is 92 for the balanced panel, unless

computational infeasibilities occur. E.g., in case of the specification TC,V RS only 89

valid computations are recorded for the periods 1984-85 and 1985-86 because of 3 such

computational infeasibilities in each of these periods.

Several conclusions jump out. First, Malmquist and Hicks-Moorsteen productivity

indices often seem to disagree on the nature of productivity change: while the Malmquist

index points to productivity decline (except under the specification TC,V RS), the Hicks-

Moorsteen measures always productivity growth. Second, the descriptive statistics for

both indices are different when comparing the balanced and the unbalanced cases (see in-

fra). Third, these descriptive statistics seem rather robust across the several specifications

of technology, again with the exception of the specification TC,V RS.

Table 2 reports on the relative presence of infeasibilities due to unavailable data (de-

noted “na”) and the computational infeasibilities (denoted “Inf”). Three conclusions

emerge from studying this table. First, infeasibilities due to unavailable data amount to

50% in the balanced case, while these vary around 40% depending on the exact year in

the unbalanced case. This amounts to a gain of about 10% in the amount of information

included in the estimates. Second, despite this gain in the amount of information, the

percentage of computational infeasibilities seems rather stable when comparing the balan-
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ced and the unbalanced cases. For the Malmquist index, the computational infeasibilities

vary between 0.00% to 2.72% in both the unbalanced and the balanced cases depending

on the technology specification. In the TC,V RS specification, the amount of computatio-

nal infeasibilities remains stable at 1.63% for both periods and in both the balanced and

unbalanced cases. No computational infeasibilities occur for the Malmquist index with

the TC,CRS and TNC,CRS specifications. Third, the Hicks-Moorsteen index does not have

a single computational infeasibility for all the technology and panel specifications over all

periods. This is why it is not reported in Table 2.

To appreciate the observed differences in more detail we also plot kernel densities for a

selection of productivity indices for a variety of frontier specifications. Figure 1 plots the

densities for the balanced and unbalanced Malmquist index for the pair of years 1984-85

under TC,CRS and TNC,CRS. For the same pair of years and technology specifications,

Figure 2 plots the densities for the balanced and unbalanced Hicks-Moorsteen index.

Note that to facilitate comparison, the densities with the balanced and unbalanced index

are estimated with a common bandwidth for each technology specification. We ignore

the plots of densities for the VRS assumption for reasons of space. In general, for a given

index the densities for the balanced and unbalanced cases seem to resemble one another

rather closely.

Table 5 formally tests for the differences between the densities of these productivity

indices on both balanced and unbalanced samples with a test statistic proposed by Li

(1996) (see also Fan and Ullah (1999) for a refinement) that is valid for both dependent

and independent variables. Note that dependency is a characteristic for these frontier

estimators (e.g., efficiency levels depend, among others, on sample size). The null hy-

pothesis states the equality of both balanced and unbalanced distributions for a given

productivity index and underlying specification of technology. The differences in densities

between both balanced and unbalanced data sets turn out to be non-significant for this

sample.

5 Conclusions

Using data on French fruit producers, this contribution is -to the best of our knowledge-

the first to empirically illustrate the differences in between using either unbalanced or

balanced panel data when computing frontier estimates for the primal Malmquist and

Hicks-Moorsteen productivity indices. In particular, the main empirical results regarding

the effect of balancing an unbalanced panel data is that in the balanced case one can loose

substantial amounts of information (around 10% in our sample). Having documented the

non-negligible impact of balancedness on productivity measurement, it is no longer an

12



option to ignore this issue.

Obviously, there remain open challenges for future research. While inferential issues

have been extensively studied when using parametric technology specifications estimated

using unbalanced panel data, it remains somehow an open issue in the case of non-

parametric specifications as employed in this study. When using unbalanced data, a key

benefit is a larger sample. However, the technology per year depends on varying numbers

of observations such that the precision of the estimates varies over the years. When

balanced data is used, the drawback is a smaller sample, but at least the precision of the

estimates does not vary over the years.3
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Färe, R., S. Grosskopf, and P. Roos (1996): “On Two Definitions of Productivity,”

Economics Letters, 53(3), 269–274.

Farrell, M. (1957): “The Measurement of Productive Efficiency,” Journal of the Royal

Statistical Society Series A: General, 120(3), 253–281.

Foster, L., J. Haltiwanger, and C. Syverson (2008): “Reallocation, Firm Turno-

ver, and Efficiency: Selection on Productivity or Profitability?,” American Economic

Review, 98(1), 394–425.

Frees, E. (2004): Longitudinal and Panel Data: Analysis and Applications in the Social

Sciences. Cambridge University Press, Cambridge.

14
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Unbalanced Balanced

1984-85 1985-86 Overall 1984-85 1985-86 Overall

% na 40.22 39.67 39.95 50.00 50.00 50.00

Malmquist

TC,CRS % Inf 0.00 0.00 0.00 0.00 0.00 0.00

TC,V RS % Inf 1.63 1.63 1.63 1.63 1.63 1.63

TNC,CRS % Inf 0.00 0.00 0.00 0.00 0.00 0.00

TNC,V RS % Inf 2.72 2.17 2.45 2.72 2.72 2.72

Table 2: Malmquist and Hicks-Moorsteen Productivity Indices under Various Specifica-
tions: Non-Availabilities (“na”) and Infeasibilities (“Inf”)

Malmquist Hicks-Moorsteen

1984-85 1985-86 1984-85 1985-86

TC,CRS z-value −1.1264 −0.9661 −1.0471 −0.9330

p-value 0.1300 0.1670 0.1475 0.1754

TC,V RS z-value −1.0497 −0.8951 −1.0001 −0.9975

p-value 0.1469 0.1854 0.1586 0.1593

TNC,CRS z-value −1.0439 −1.0173 −0.9673 −0.8615

p-value 0.1483 0.1545 0.1667 0.1945

TNC,V RS z-value −0.8854 −0.7358 −0.9764 −0.8456

p-value 0.1880 0.2309 0.1644 0.1989

Table 3: Li-test Results of Density Comparison between Balanced and Unbalanced Malm-
quist and Hicks-Moorsteen Productivity Indices under Various Specifications
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Figure 1: Kernel Density of Balanced and Unbalanced Malmquist Index (1984-85) under
TC,CRS and TNC,CRS

Figure 2: Kernel Density of Balanced and Unbalanced Hicks-Moorsteen Index (1984-85)
under TC,CRS and TNC,CRS
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Total Factor Productivity Growth in the United States Farm Sector: 1948-20091 

Eldon Ball and Sun Ling Wang 

Economic Research Service 

US Department of Agriculture 

I. Introduction 

The rise in agricultural productivity has long been chronicled as the single most important source 

of economic growth in the U.S. farm sector. Though their methods differ in important ways, the 

major sectoral productivity studies by Kendrick and Grossman (1980), Jorgenson, Gollop, and 

Fraumeni (1987), and Jorgenson and Gollop (1992) share this common conclusion. In a more 

recent study, Jorgenson, Ho, and Stiroh (2005) find that productivity growth in agriculture 

averaged 1.9 percent per year over the 1977-2000 period. Output grew at a 3.4 percent average 

annual rate over this period. Thus productivity growth accounted for almost 80 percent of the 

growth in output in the farm sector. Only three of the forty-four sectors covered by the 

Jorgenson, Ho, and Stiroh (2005) study achieved higher rates of productivity growth than did 

agriculture.  

The U.S. Department of Agriculture (USDA) has been monitoring the sector’s productivity 

performance for decades. In fact, the USDA in 1960 was the first agency to introduce a 

multifactor productivity measure into the Federal statistical program. Today, the Department’s 

Economic Research Service (ERS) routinely publishes total factor productivity (TFP) measures 

based on a sophisticated system of production accounts. The official TFP statistics are based on 

                                                            
1 The views expressed herein are those of the authors, and not necessarily those of the U.S. Department of 
Agriculture. 
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the translog transformation frontier. The translog model relates the growth rates of multiple 

outputs to the cost-share weighted growth rates of labor, capital, and intermediate goods. 2 

The applied USDA model is quite detailed. The changing demographic character of the 

agricultural labor force is used to construct a quality-adjusted index of labor input.3 Similarly, 

much asset specific detail underlies the measure of capital input. For example, aggregation 

across different parcels of land is at the county level. The contributions of feed and seed, energy, 

and agricultural chemicals to output growth are captured in the index of intermediate inputs. An 

important innovation is the use of hedonic price indexes in constructing measures of fertilizers 

and pesticides consumption. Also included in intermediate input are a number of purchased 

services. The result is a time series of productivity indexes now spanning the years 1948 to 2009 

II. Total Factor Productivity Indexes 

The measured rates of productivity growth reported by the USDA are formed from Törnqvist 

indexes of outputs and inputs. A sector’s total factor productivity (TFP) growth over some period 

is defined as: 

(1)        

where the Yi  are output indexes, the Xj are input indexes, the Ri are output revenue shares, and the 

Wj are input cost shares. 

                                                            
2 A complete description of the USDA model can be found in Ball et al. (1999).  

3 See Jorgenson and Griliches (1967) for a discussion of input quality. 
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The above expression can be derived from a homogenous translog transformation function. 

The translog function itself can provide a second-order approximation to an arbitrary linearly 

homogenous function.  

III. The Production Accounts 

The USDA’s Economic Research Service has constructed production accounts consistent with a 

gross output model of production. Output is defined as gross production leaving the farm as 

opposed to real value added. Inputs are not limited to labor and capital but include intermediate 

inputs as well. The text in this section provides an overview of the sources and methods used to 

build the annual production accounts for the 1948-2009 period.   

Output. The development of a measure of output begins with disaggregated data for physical 

quantities and market prices of crops and livestock. The output quantity for each crop and 

livestock category includes the quantities of commodities sold off the farm, additions to 

inventory, and quantities consumed in farm households as part of final demand during the 

calendar year. The price corresponding to each disaggregated output reflects the value of that 

output to the producer; that is, subsidies are added and indirect taxes are subtracted from market 

values. 

One unconventional aspect of our measure of total output is the inclusion of goods and 

services from certain ‘non-agricultural’ or secondary activities. These activities are defined as 

activities closely linked to agricultural production for which information on output and input use 

cannot be separately observed. Two types of secondary activities are distinguished. The first 

represents a continuation of the agricultural activity, such as the processing and packaging of 

agricultural products on the farm, while services relating to agricultural production, such as 
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machine services for hire, are typical of the second. The index of total output reported in table 1 

is formed by aggregating over agricultural goods and the output of goods and services from 

secondary activities.  

Intermediate Input. Intermediate input consists of goods used in production during the calendar 

year whether withdrawn from beginning inventories or purchased from outside the farm sector.  

Open-market purchases of feed, seed, and livestock inputs enter the intermediate goods accounts. 

Withdrawals from producers' inventories are also measured in output, intermediate input, and 

capital input. Beginning inventories of crops and livestock represent capital inputs and are 

treated in the discussion of capital below. Additions to these inventories represent deliveries to 

final demand and are treated as part of output. Goods withdrawn from inventory are 

symmetrically defined as intermediate goods and recorded in the farm input accounts.  

Data on current dollar consumption of petroleum fuels, natural gas, and electricity are 

compiled by the Economic Research Service. Prices of individual fuels are taken from the 

Energy Information Administration's Monthly Energy Review. The index of energy consumption 

is formed implicitly as the ratio of total expenditures (less State and Federal excise tax refunds) 

to the corresponding price index.  

Pesticides and fertilizers are important intermediate inputs but their data require 

adjustment since these inputs have undergone significant changes in input quality over the 1948-

2009 period. Since input price and quantity series used in a study of productivity must be 

denominated in constant-efficiency units, we construct price indexes for fertilizers and pesticides 

using hedonic methods. Under this approach, a good or service is viewed as a bundle of 

characteristics which contribute to the productivity derived from its use. Its price represents the 
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valuation of the characteristics "that are bundled in it", and each characteristic is valued by its 

"implicit" price (Rosen, 1974). However, these prices are not observed directly and must be 

estimated from the hedonic price function.  

A hedonic price function expresses the price of a good or service as a function of the 

quantities of the characteristics it embodies. Thus, the hedonic price function for, say pesticides, 

may be expressed as ),( DXWw  , where w represents the price of a particular  pesticide or 

fertilizer, X is a vector of characteristics or quality variables and D is a vector of other variables.  

Kellogg et al. (2002) have compiled data on characteristics that capture differences in pesticide 

quality. These characteristics include toxicity, persistence in the environment, and leaching 

potential, among others.  

Other variables (denoted by D) are also included in the hedonic equation, and their 

selection depends not only on the underlying theory but also on the objectives of the study. If the 

main objective of the study is to obtain price indexes adjusted for quality, as in our case, the only 

variables that should be included in D are time dummy variables, which will capture all price 

effects other than quality. After allowing for differences in the levels of the characteristics, the 

part of the price difference not accounted for by the included characteristics will be reflected in 

the time dummy coefficients.  

Economic theory places few if any restrictions on the functional form of the hedonic 

price function. We adopt a generalized linear form, where the dependent variable and each of the 

continuous independent variables is represented by the Box-Cox transformation. This is a 

mathematical expression that assumes a different functional form depending on the 
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transformation parameter, and which can assume both linear and logarithmic forms, as well as 

intermediate non-linear functional forms.  

Thus the general functional form of our model is given by:  

 (2)    
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Similarly,  nnX   is the Box-Cox transformation of the continuous quality variable nX  where 

  nnnn
nXX   /)1(  if 0n and nnn XX ln)(  if 0n . Variables represented by D are 

time dummy variables, not subject to transformation, α and γ are unknown parameter vectors, 

and ε is a stochastic disturbance.   

Finally, price and implicit quantity indexes are calculated for a range of purchased 

services, such as contract labor services, custom machine services, and machine and building 

repairs and maintenance. Contract labor services are becoming increasingly important in 

agricultural production. Since farmers contract with labor brokers to assemble crews, there is 

little data on hours worked. Only data on nominal expenditures for contract labor are collected. 

In order to account for the contribution of contract labor services to agricultural production we 

must construct an appropriate deflator. Given that the compensation of contract workers will 

likely vary with differences in demographic characteristics such as age, experience, gender, and 

education, we construct a deflator for contract labor using hedonic methods based on data from 
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the National Agricultural Workers Survey (NAWS). The general form for the hedonic model is 

given in equation (2) above. In the case of contract labor, however, the dependent variable is the 

wage rate per hour for the contract labor service. The characteristic variables Xn include farm 

work experience, education, gender, age, among others.4  

A Törnqvist index of total intermediate input is formed by weighting the growth rates of 

each category of intermediate input described above by their value shares in the overall value of 

intermediate inputs. 

Labor Input. The USDA labor accounts incorporate the demographic cross-classification of the 

agricultural labor force developed by Jorgenson, Gollop, and Fraumeni (1987). Matrices of hours 

worked and compensation per hour have been developed for laborers cross-classified by sex, 

age, education, and employment class—employee versus self-employed and unpaid family 

workers.  

Labor compensation data for self-employed and unpaid family workers are not observed. 

As a result, self-employed and unpaid family workers are imputed the mean wage earned by 

hired workers with the same demographic characteristics. Indexes of labor input are constructed 

using the demographically cross-classified hours and compensation data. Under the Törnqvist 

approach, labor hours having higher marginal productivity (wages) are given higher weights in 

forming the index of labor input than are hours having lower marginal productivities. Doing so 

explicitly adjusts indexes of labor input for quality change in labor hours.  

                                                            
4 See Wang et al. (2011) for a detailed description of the characteristics included in the hedonic model. 
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Capital Input. The measurement of productivity growth requires time series measures of capital 

input and service prices. Construction of these series begins with estimating the capital stock and 

the rental price for each asset type. For depreciable assets, the perpetual inventory method is 

used to develop capital stocks from data on investment. The stocks of land and inventories are 

measured as implicit quantities derived from balance sheet data. Implicit rental prices for each 

asset are based on the correspondence between the purchase price of the asset and the discounted 

value of future service flows derived from that asset.  

Depreciable assets. The perpetual inventory method cumulates investment data measured in 

constant prices into a measure of capital stock. Current dollar investment data for each 

depreciable asset are obtained from the USDA’s Agriculture Resource Management survey. The 

Bureau of Labor Statistics producer price indexes for passenger cars, motor trucks, wheel-type 

farm tractors, and agricultural machinery excluding tractors are employed as investment 

deflators. For non-residential structures, the implicit price deflator is taken from the U.S. national 

income and product accounts. 

Under the perpetual inventory method, capital stock at the end of each period, say Kt , is 

measured as the sum of all past investments, each weighted by its relative efficiency dτ: 

(4)     

where  is approximated by hyperbolic efficiency function, 

(5)         

    , 
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L is the service life of the asset, ߬ represents the asset’s age, and ß is a curvature or decay 

parameter.5 

Little empirical evidence is available to suggest a precise value for ß. However, two 

studies (Penson, Hughes and Nelson, 1977; Romain, Penson and Lambert, 1987) provide 

evidence that efficiency decay occurs more rapidly in the later years of service, corresponding to 

a value of ß in the 0 to 1 interval. For purposes of this study, it is assumed that the efficiency of a 

structure declines slowly over most of its service life until a point is reached where the cost of 

repairs exceeds the increased service flows derived from the repairs, at which point the structure 

is allowed to depreciate rapidly (ß=0.75). The decay parameter for durable equipment (ß=0.5) 

assumes that the decline in efficiency is more uniformly distributed over the asset's service life.  

 The other critical variable in the efficiency function (5) is the asset lifetime L. For each 

asset type, there exits some mean service life L around which there exists some distribution of 

actual service lives. It is assumed that the underlying distribution is the normal distribution 

truncated at points two standard deviations above and below the mean service life.   

Rental rates. Firms will add to the capital stock as long as the present value of the net revenue 

generated by an addition unit of capital exceeds the purchase price of the asset. This can be 

stated algebraically as:  

(6)   ∑ ቀ డ௬

డ
ஶ
௧ୀଵ െ ݓ

డோ
డ
ቁ	ሺ1  ሻି௧ݎ   ݓ

                                                            
5 The value of ß is restricted only to values less than or equal to one. For values of ß greater than zero, the efficiency 

of the asset approaches zero at an increasing rate. For values less than zero, efficiency approaches zero at a 

decreasing rate. 
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where p is the price of output, wK is the price of investment goods, and r is the real discount rate. 

To maximize net present value, firms will continue to add to capital stock until this equation 

holds as an equality:  

                    (7) డ௬

డ
ൌ ݓݎ  ∑ݎ ݓ

డோ
డ

ሺ1  ሻି௧ஶݎ
௧ୀଵ =c 

where c is the implicit rental price of capital.  

The rental price consists of two components. The first term, rwK, represents the 

opportunity cost associated with the initial investment. The second term ݎ ∑ ݓ
డோ
డ

ሺ1  ሻି௧ஶݎ
௧ୀଵ  

is the present value of the cost of all future replacements required to maintain the productive 

capacity of the capital stock. Let F denote the present value of the stream of capacity 

depreciation on one unit of capital according to the mortality distribution m:  

ܨ    (8) ൌ ∑ ݉ሺ1  ሻିஶݎ
௧ୀଵ  

 where  ݉ ൌ െሺ݀ െ ݀ିଵሻ, ߬ ൌ 1,… . ,  .ݐ

Since replacement at time t is equal to capacity depreciation at time t:  

(9)   ∑ 	డோ
డ

ஶ
௧ୀଵ 	ሺ1  ሻି௧ݎ ൌ ∑ ௧ஶܨ

௧ୀଵ ൌ ி

ሺଵିிሻ
 

and  

(10)     ܿ ൌ ௪಼

ଵିி
  

The real rate of return r in the above expression is calculated as the nominal yield on 

investment grade corporate bonds less the rate of inflation as measured by the implicit deflator 

for gross domestic product. An ex ante rate is then obtained by expressing observed real rates as 
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an ARIMA process. We then calculate F holding the required real rate of return constant for that 

vintage of capital goods. In this way, implicit rental prices c are calculated for each asset type.  

Land input. To obtain a constant-quality stock of land stock, we first construct intertemporal 

price indexes of land in farms. The stock of land is then constructed implicitly as the ratio of the 

value of land in farms to the intertemporal price index. We assume that land in each county is 

homogeneous, hence aggregation is at the county level.  

Inventories. Beginning inventories of crops and livestock are treated as capital inputs. The 

number of animals on farms is available from annual surveys, as are the stocks of grains and 

oilseeds. December average prices are used to value commodities held in inventory. 

Indexes of capital input are formed by aggregating over the various capital assets using as 

weights the cost shares based on asset-specific rental prices. Service prices for capital input are 

formed implicitly as the ratio of the total current dollar value of capital service flows to the 

quantity index. As is the case for labor input, the resulting measure of capital input is adjusted 

for changes in asset quality. 

IV. Productivity Growth 

Input growth typically has been the dominant source of economic growth for the aggregate 

economy and for each of its producing sectors. Jorgenson, Gollop, and Fraumeni (1987) find this 

to be the case for the aggregate economy in every subperiod over the period 1948-79. Denison 

(1979) draws a similar conclusion over the longer interval 1926-76. In their sectoral analyses, 

Jorgenson, Gollop, and Fraumeni (1987) find that output growth relies most heavily on input 

growth in forty-two of forty-seven private business sectors in the 1948-79 period, and in a more 

aggregated study (Jorgenson and Gollop, 1992) through 1985 in eight of nine sectors. 
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Agriculture turns out to be one of the few exceptions. Productivity growth dominates 

input growth. This is confirmed in table 2 which reports the source decomposition of output 

growth in the farm sector for the full 1948-2009 period and twelve subperiods. Applying 

equation (1), output growth equals the sum of contributions of labor, capital, land, and materials 

inputs and TFP growth (The contribution of each input equals the product of the inputs growth 

rate and its respective share in total cost.). 

The singularly important role of productivity growth in agriculture is made all the more 

remarkable by the dramatic contraction in labor input in the sector, a pattern that persists through 

every subperiod. Over the full 1948-2009 period, labor input declined at an annual rate of 2.51%, 

a rate unmatched by any of the 50 nonfarm sectors evaluated by Jorgenson, Gollop, and 

Fraumeni (1987). When weighted by its 0.20 share in total cost, the contraction in labor input 

contributes an average -0.52 percentage points to output growth. 

Capital input (excluding land) exhibits a different pattern. Its contribution to output 

growth increased markedly through the early 1980s, but declined following the spike in real 

rates. Producers increasingly substituted purchased machine services for own capital. On 

average, however, capital input expanded over the full period. Its positive growth contributes an 

annual 0.02 percentage points to output growth. 

Land input declined at a -0.55% average annual rate; its contribution to output growth 

averaged -0.08 percentage points per year.  

Material input’s contribution, as reported in table 2, oscillated between positive and 

negative values over the sample period but averaged a substantial positive rate of 0.69% per 

year. This positive contribution was sufficient to outweigh the negative contributions through 
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labor and land. Still, the net contribution of all three inputs was only 0.11 percentage points per 

year, leaving responsibility for the 1.63% average annual rate growth in farm sector output 

almost entirely to productivity growth. 

V. Concluding Remarks 

Productivity growth is the single most important source of economic growth in the U.S. farm 

sector. The major sectoral productivity studies share this common conclusion (Kendrick and 

Grossman, 1980; Ball, 1985; Jorgenson, Gollop, and Fraumeni, 1987; Jorgenson and Gollop, 

1992; Ball et al., 1997, 1999; Jorgenson, Ho, and Stiroh, 2005). In this paper, we provide further 

evidence in support of what appears a consensus point of view. More specifically, we provide an 

overview of the methods and data used by the USDA’s Economic Research Service to measure 

the growth in farm sector output and the contributions of input growth and growth in total factor 

productivity. The official USDA statistics show that output grew at an average annual rate of 

1.63% over the period 1948 to 2009. The net contribution of capital, labor, and materials inputs 

was a modest 0.11 percentage points per year, while growth in total factor productivity added an 

annual 1.52 percentage points to output growth. Thus productivity growth accounted for 93% of 

the growth in farm sector output. 
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Table 1. Average annual rates of growth (percent), 1948‐2009 (2005=1) 

Period  Total output  Total farm input  Capital  Labor Intermediate inputs       TFP 

         All 

Farm 

origin  Energy 

Agricultural 

chemicals 

Purchased 

services    

1948‐2009  1.63  0.11  ‐0.21 ‐2.51 1.43 1.15  0.85 2.54  1.15  1.52

1948‐1953  1.18  1.34  1.75 ‐3.34 3.72 2.23  4.61 2.87  2.40  ‐0.16

1953‐1957  0.96  0.28  ‐0.10 ‐4.58 2.86 3.73  0.15 1.35  1.88  0.68

1957‐1960  4.03  0.50  ‐0.43 ‐3.74 2.95 2.58  0.06 5.95  5.42  3.53

1960‐1966  1.21  0.05  0.05 ‐3.75 1.72 1.73  1.65 5.54  ‐0.67  1.16

1966‐1969  2.24  ‐0.08  0.34 ‐2.78 0.88 2.13  0.43 ‐2.99  ‐0.75  2.32

1969‐1973  2.65  0.46  ‐0.44 ‐1.84 2.02 1.70  ‐0.42 8.22  0.40  2.19

1973‐1979  2.26  1.64  1.04 ‐1.06 2.76 1.83  4.09 3.29  4.84  0.62

1979‐1981  1.53  ‐1.85  0.39 ‐1.39 ‐3.05 ‐2.68  ‐3.35 2.54  ‐7.50  3.39

1981‐1990  0.96  ‐1.22  ‐2.16 ‐2.79 ‐0.13 ‐0.19  ‐1.59 ‐0.75  0.39  2.19

1990‐2000  1.84  0.31  ‐0.75 ‐1.63 1.64 1.20  0.96 2.85  2.38  1.53

2000‐2007  0.77  0.14  ‐0.16 ‐1.56 0.88 0.48  ‐0.74 1.55  1.18  0.63

2007‐2009  1.88  ‐1.80  0.88 ‐3.69 ‐2.41 ‐3.27  5.24 1.32  ‐5.19  3.68

Note: The subperiods are measured from cyclical peak to peak in aggregate economic activity as defined by the National Bureau of Economic 

Research (see http://www.nber.org/cycles.html). 



17 
 

Table 2. Sources of Growth in the U.S. Farm Sector, 1948‐2009 (average annual 
growth rates in percent) 

                                            
1948‐
2009 

1948‐
1953 

1953‐
1957 

1957‐
1960 

1960‐
1966 

1966‐
1969 

1969‐
1973 

1973‐
1979 

1979‐
1981 

1981‐
1990 

1990‐
2000 

2000‐
2007 

2007‐
2009 

                                            

Output growth  1.63 1.18 0.96 4.03 1.21 2.24 2.65 2.26 1.54 0.96 1.84 0.77 1.88

Sources of growth 

Input growth  0.11 1.34 0.28 0.50 0.05 ‐0.08 0.46 1.64 ‐1.85 ‐1.22 0.31 0.14 ‐1.80

   Labor  ‐0.52 ‐0.81 ‐1.08 ‐0.83 ‐0.81 ‐0.61 ‐0.38 ‐0.19 ‐0.22 ‐0.43 ‐0.34 ‐0.35 ‐0.64

   Capital  0.02 0.54 0.15 0.03 0.08 0.32 0.14 0.32 0.23 ‐0.61 ‐0.21 0.05 0.35

   Land  ‐0.08 0.02 ‐0.17 ‐0.16 ‐0.07 ‐0.22 ‐0.29 0.00 ‐0.12 ‐0.09 0.00 ‐0.08 ‐0.12

   Materials  0.69 1.58 1.38 1.45 0.85 0.43 0.99 1.50 ‐1.74 ‐0.09 0.87 0.52 ‐1.39

Total factor productivity  1.52 ‐0.16 0.68 3.53 1.16 2.32 2.19 0.62 3.39 2.19 1.53 0.63 3.68

                                            

Note: The subperiods are measured from cyclical peak to peak in aggregate 
economic activity. 
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Abstract: Firms within a state, states within a country, and countries across the world are 

continuously striving to enhance their competitiveness in the present age of globalization. 

This paper defines competitiveness of a production unit as the relative cost of production 

per unit of output. Basic concepts from neoclassical production economics are used to 

provide a detailed decomposition of cost competitiveness of a firm relative to a rival. It is 

also shown how changes in efficiency and relative input prices along with technical 

change affect how cost competitiveness of a firm evolves over time. State level data from 

the U.S. Census of Manufacturers from the years 1992, 1997, 2002, and 2007 are used in 

a empirical application of the proposed methodology using Data Envelopment Analysis. 
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Productivity Change over Time and the Dynamics of Cost Competitiveness 

Subhash C Ray 

University of Connecticut 
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subhash.ray@uconn.edu 

 

In the present age of globalization, and especially after the Great Recession, countries all 

over the world are engaged in a ‘race to the bottom’ endeavoring to outperform others in 

terms of lowering their production costs in an effort to capture a bigger share of the 

global market. While enhanced competitiveness has become the holy grail of public 

policy and features frequently in political discourse, calibration of competitiveness for 

comparison across regions or over time has remained rather vague. In fact, more often 

than not, it is not clear enough what the different regions are assumed to be competing 

for.  

The World Economic Forum, in its Global Competitiveness Report (2011), defines 

competitiveness as  

                 “the set of institutions, policies, and factors that determine the level  

                   of productivity of a country” (WEF 2011, p 4). 

The Report goes on to emphasize 

                 “The productivity level also determines the rate of return obtained by  

                   investments in an economy, which in turn are the fundamental drivers 

                   of its growth rate”. (WEF 2011, p 4). 

In a sub-national context, a wider price-cost margin can be seen to be a competitive 

advantage of one region relative to another one. In particular, if the output price is 

uniform across states in a nationally integrated product market, lower average cost makes 

a state more attractive to entrepreneurs thereby making it more competitive. Even at the 

sub-national level, states and provinces within the country try to remain cost-competitive. 

In U.S. manufacturing, for example, there has been considerable migration of industries 

from the high cost Rustbelt states to the lower cost Sunbelt states. As unit costs change 

over time, firms (or states) move up or down the list in the relative competitiveness chart. 
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Differences in average cost between two firms at a given point in time (or for the same 

firm at two different points in time) arise primarily out of two sources: (i) differences in 

input prices, and (ii) productivity differences. In an inter temporal context, the 

productivity change component can be further decomposed into several factors showing 

(a) differences in cost efficiency, (b) differences in scale efficiency, (c) autonomous shift 

in the cost function due to technical change, and (d) scale effects of technical change. 

This paper builds on a comparable decomposition of the Fisher productivity Index by 

Ray and Mukherjee (1996) on one hand, an earlier static decomposition of cost 

competitiveness due to Ray and Mukherjee (2000), and a differential measure of the 

contribution of productivity in cost change due to Grifell-Tatje and Lovell (2000). State 

level data on output quantities and input prices and quantities constructed from the U.S. 

Census of Manufacturers for different years are used in an empirical application of the 

proposed DEA model. 

The rest of the paper unfolds as follows. Section 2 presents the conceptual background of 

cost competitiveness based on standard economic theory. Section 3 briefly describes the 

relevant nonparametric DEA methodology. Section 4 uses an empirical application using 

U.S. manufacturing Data. Section 5 is the conclusion. 

 

2. The Conceptual Background 

A Static Measure of Competitiveness 

Consider two firms from two regions, A and B, producing a scalar output y from a vector 

of n inputs .nx R+∈  It is assumed that both firms have access to the same production 

technology and are observed at the same point in time. The input price vectors in the two 

regions are wA and wB, respectively. The input-output bundles of the two firms are (xA, yA) 

and (xB, yB). The actual costs of the two firms are 

A A
AC w x′= and   The corresponding average costs are .B B

BC w x′= A

A

C
A yAC = and 

.B

B

C
B yAC =  As argued above, firm A has a competitive advantage over firm B if ACA is 

lower than ACB. A measure of the cost competitiveness index of A over B is 

 

 3



 | . (B
A B

A

ACCCI
AC

= 1)  

When this index exceeds unity A is more competitive than B. The greater the value of this 

index, the greater is its competitiveness. On the other hand, if the index is less than 1, A 

stands behind B in respect of competitiveness.  

Productivity and Competitiveness 

For simplicity we first consider the 1-input 1-output case. A uses xA of the scalar input to 

produce yA units of the output. Similarly, B uses xB to produce yB. In this simple case, the 

average productivities of the two firms are A

A

y
A xAP = and .B

B

y
B xAP = A measure of the 

relative productivity of A when compared to B is 

                        | .
A B

A B

B A

B A

y x
x yA

A B y x
B x y

AP
AP

π = = =    (2) 

Now suppose both firms paid the same price w for the input. In that case, A AC wx= and 

.BC wx= B In this case, it is obvious, that  

| | .
B

B

A

A

wx
yB

A B A Bwx
A y

ACCCI
AC

π= = =  (3) 

In other words, cost competitiveness reflects relative productivity. When the firms pay 

two different prices (wA and wB),  

   | | .
B B

B B

AA A

A

w x
y wB

A B A Bww x
A y

ACCCI
AC

π= = = (4) 

In this case, cost competitiveness is determined by both productivity and input price 

differences. Even when A has a lower productivity than B, a  sufficiently lower input 

price may make it more competitive. 

Of course, in the more realistic case of multiple inputs, even with a scalar output, the 

simple average productivities and the input price ratio defined above are meaningless. 

We now show how the relation between competitiveness index, productivities, and input 

prices can be retained by using a total factor productivity index and input price index.  

Note that the cost competitiveness index can be expressed alternatively as either  
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.

B B
A

B B
A A A A

B B
A

A
B BB

A A A B

A B

yw x
y yB

w x w x
A y w x

y
y w x

w x w x
w x

AC
AC

′

′ ′

′

′

′ ′

′

= =

=

   (5) 

or 

.

B B
A

B B
A A A A

B B
A

A
B AB

B A A A

B B

yw x
y yB

w x w x
A y w x

y
y w x

w x w x
w x

AC
AC

′

′ ′

′

′

′ ′

′

= =

=

   (6) 

 

Taking the geometric mean of the two, we get  

 

1
2

1
2

.

. .
A

B A B BB
A A A B

A A B A

A B B B

y
yB w x w x

w x w xw x w xA
w x w x

AC
AC

′ ′

′ ′
′

′ ′

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦  (7) 

Define the Fisher input quantity  index 

 

 
1
2

| .
A A B A

x
A B A B B B

w x w xQ
w x w x

′

′ ′

⎡ ⎤′
= ⎢
⎢ ⎥⎣ ⎦

⎥                        (8) 

and the Fisher input price index 

 
1
2

| .
B A B B

A A A B
w x w x

B A w x w x
W ′ ′

′ ′
⎡= ⎣ ⎤⎦    (9) 

 

Then the cost competitiveness index becomes 

 

 

 } .
B
A

x

y
yB

| .A B Q
A

ACCCI W
AC

= = B A   (10) 
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Finally define the output quantity index 

 

 

  | .A

B

yy
A B yQ =    (11) 

Then 

  |

|
} |.

y
A B
x
A B

QB .A B BQ
A

ACCCI W
AC

= = A  (12) 

 

The first factor on the right hand side of (12) is the Fisher Total Factor Productivity index 

while the second is the input price index (of B relative to A). Again, as in the single input 

case, A may be found to be cost competitive relative to B even when it has a lower total 

factor productivity if the input price index (of B relative to A) is sufficiently greater than 

unity. 

 

 

 

Decomposition of the Cost Competitiveness Index: 

We now identify the various factors that contribute to competitiveness through a 

multiplicative decomposition of a number of normative components of the index along 

the lines of Ray and Mukherjee (2000). For this we need to define a benchmark 

technology in terms of the production possibility set: 

                  T = {(x, y): y can be produced from x}.                         (13) 

Any (x , y ) ∈ T is a feasible input output bundle. Obviously, both (xA, yA) and (xB, yB) are 

elements of the set T. The minimum cost of producing a specific output level 0y  at input 

prices  is 0w

                                    0 0
0 0( , ) min :( , )C w y w x x y T′= ∈ .

A

 Clearly, the actual cost of firm A cannot be any lower than the minimum cost of 

producing yA at input prices wA. That is 

                                                ( , ) .A A
A AC w y C w x′≤ =  
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The cost efficiency of firm A can be measured as 

                                 
( , )

1.
A

A
A

A

C w yCE
C

= ≤                           (14) 

Similarly, the cost efficiency of firm B is 

 

   
( , )

1.
B

B
B

B

C w yCE
C

= ≤                      (15)   

Whenever cost efficiency is less than unity, the observed output of a firm can be 

produced at a lower cost. This would automatically lower the average cost and enhance 

its cost competitiveness ceteris paribus. 

It is possible to decompose the cost competitiveness index as 

                                           

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )
( )

1

|

( , )

( , )

( , )

( , )

( , ) ( , )

( , ) ( , )

( , )

( , )

.

.

.

.

. .

B

B

A

A

B
B B

B
BB

A
A A

A
AA

A B B
A

A

B A
B A

B A

B
B

B

A
A

A

C
yB

A B C
A y

C C w y
yC w y

C C w y
yC w y

C w y C w y
C y

C w y C w y
C y

C w y
yA

C w y
B y

ACCCI
AC

CE
CE

= =

=

=
B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

              (16) 

 

The first factor on the right hand side is the ratio of the cost efficiencies of the two firms. 

A higher cost efficiency of firm A adds to its cost competitiveness. 

We focus now on the second factor which would measure the cost competitiveness of A if 

the two firms had the same level of cost efficiency. The two terms in the numerator and 

the denominator measure the average cost of producing the output levels yB and yA , 

respectively, at the applicable input prices . Now, unless the technology exhibits constant 

returns to scale globally, the average cost varies with the level of output. The output level 

where the average cost for a given vector of input prices reaches a minimum is known as 

 7



the efficient scale of production. Let *
Ay be the efficient scale for prices wA. 

Then
*

*

( , ) ( , )A A
A A

AA

C w y C w y
yy

≤ and 

  

*

*

( , )

( , )

A
A

A
A

A

A

C w y
y

A C w y
y

SE =  is the scale efficiency of firm A. 

Similarly, is the efficient scale for prices wB and  *
By

  

*

*

( , )

( , )

B
B

B
B

B

B

C w y
y

B C w y
y

SE = is the scale efficiency of firm B. 

Hence, this second factor in (16) can be expressed as 

                 

( )
( )

* 1 *

* *

*

*

*

*

*

*

*

*

( , )

( , ) ( , ) , )

( , ) ( , )( , )

( , )

( , )

( , )
. .

B
B

B
B B B

B B B
B B B

A AA
A AA

AA A
A

A

A

B
B

B
A

A

A

C w y
y

C w y C w y C w y
y y y

C w y C w yC w y
yy y

C w y
y

C w y
yA

C w y
B y

SE
SE

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (17) 

 

 Next  

 

                   

* *

* *

**

* *

( , ) ( , )

( , )

( , )( , ) ( , )
.

B A
B B

B
B B

AA
BA A

A A

C w y C w y
y C w y

C w yC w y C w y
y y

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢= ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

*

* .B
A

y ⎥    (18) 

 

Alternatively, 

 

 

 

* *

* *

**

* *

( , ) ( , )

( , )

( , )( , ) ( , )
.

B B
B B

B
B A

AA
AA A

A A

C w y C w y
y C w y

C w yC w y C w y
y y

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢= ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

*

* .B
B

y ⎥   (19) 

 

Taking the geometric mean of the two 
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1
* * 2

1
* ** * 2
1

* **

* *

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )( , ) ( , ) ( , )
. .

B B
B B

B B
B BA B

A AA B
A BA A

A A

C w y C w y C w y
y yC w y C w y

C w y C w yC w y C w y C w y
y y

⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢= ⎣ ⎦⎢ ⎥ ⎢

⎣ ⎦ ⎣

*

*

* *

*

.

A
B

A
A

A

y

y

⎤
⎥
⎥
⎦

   (20) 

The first factor of the right hand side of (20) is a ‘cost of production index’ or a true input 

price index. A value of this term greater than unity implies that it costs more to produce 

the same output quantity ( *
Ay or ) at input prices wB than at prices wA. Naturally, it 

shows an input price advantage for A.  

*
By

Finally, the last factor can also be expressed as 

                                  

1
* 2

*

1
* * *2

* * *

* * *

* * *

*

*

( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , )

. .

B
B

B
B A B

B B A

B B A
B A A

A A A

A A A
A

B

B

C w y
y

C w y C w y C w y
y y y

C w y C w y C w y
y y y

C w y
y

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

                (21) 

This can be regarded as a scale bias of input price change. If this ratio exceeds unity, *
Ay  

has a higher scale efficiency at input prices wB than the scale efficiency of *
By at prices 

wA. A value of this factor different from unity  reflects non-homotheticity of the 

technology. In the case of homotheticity, the cost function is multiplicatively separable in 

input prices and the output quantity. As a result, when input prices change, the total (and 

average) cost curves experience a neutral shift. In particular, the average costs at prices 

wA and wB reach their respective minima at the same level output. In that case, and *
Ay

*
By are identical. Hence, this last factor equals unity. 

Thus, a complete decomposition of the cost competitiveness index is 

( ) ( ) ( ) ( )

*( , )1 1
* * * *2 2( , )

* * * * *( , )

( , )

( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )( , )
. . . . .

. . .

B

BB

A A

A

A AAC w yA A
B B A BAAC w yA A B A B B
A A B A BB AC w yBA B A AB

BAC w yBB

C
yAC

AC C
y

C w y
C C w y C w y AC w y AC w y

C w y C w y AC w y AC w yC w y
C

CCI

CEI IPI SEI SBIPC

= =

⎡ ⎤ ⎡= ⎣ ⎦ ⎣

=

⎤
⎦        (22) 
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Here 

      A

B

CECEI
CE
⎡ ⎤

= ⎢
⎣ ⎦

⎥ is the cost efficiency index, 

      
1

* * 2

* *

( , ) ( , )

( , ) ( , )
.

B B
A B

A A
A B

C w y C w y
C w y C w y

IPI ⎡= ⎣
⎤
⎦ is the input price index, 

      A

B

SESEI
SE
⎡ ⎤

= ⎢
⎣ ⎦

⎥  is the scale efficiency index, and  

     
1

* * 2

* *

( , ) ( , )

( , ) ( , )
.

A B
B B

A B
A A

AC w y AC w y
AC w y AC w y

SBIPC ⎡= ⎣
⎤
⎦

A ∈

is the scale bias of input price change. 

Of course, following the usual Farrell decomposition, one can further separate the 

technical and allocative efficiency components of overall cost efficiency. The input 

oriented technical efficiency of A is 

                 (23) min :( , ) .A
ATE x y Tθ θ=

The corresponding allocative efficiency is 

 .A
A

A

CEAE
TE

=    (24) 

Similarly, 

    (25) min :( , )B
BTE x y Tθ θ= B ∈

and 

 .B
B

b

CEAE
TE

=    (26) 

Cost competitiveness index and its various components are explained diagrammatically 

in Figures 1-4.  In Figure 1 the points A0 and B0 show the actual output levels and the 

costs of the two firms A and B. As is apparent from the slopes of the two lines OB0 and 

OA0 , A has a lower average cost and, hence, is cost competitive relative to B. The cost 

competitiveness index of A can be measure by the ratio 0 .B

B

B y
Dy   However, the minimum 

cost of producing yA is A1yA. Thus, cost efficiency of A is 1

0
.A

A

A y
A y Similarly,  the cost 
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efficiency of B is 1

0
.B

B

B y
B y  For the cost function C(wA, y) average cost reaches a minimum at 

the output level Scale efficiency of A is * .Ay

*
2

*

1
.

A

A

A

A

A y
y

A A y
y

SE =  Similarly, 

*
2

*

1
.

B

B

B

B

B y
y

B B y
y

SE =  

Figure 2 shows the Farrell decomposition of cost efficiency into technical and allocative 

efficiency. The points ,A T
A ,x x and *

Ax are, respectively, the actual, technically efficient, 

and cost efficient input bundles of the firm A. Accordingly, *, ,
T T
A A

A A

Ox Ox
A AOx OC

TE AE= = and 

*

.A

A

OC
A OxCE =  Similarly, *, ,

TT
bB

B B

OxOx
B BOx OC

TE AE= = and 
*

.B

B

OC
B OxCE =  In Figure 3, the curves 

C(wA, y) and C(wB, y) are the total cost curves for input prices wA and wB. The ratio 
*

*
A

A

Cy
Ay

shows the relative cost of producing output at input prices wB and wA and is a 

‘true’ cost of production index. Similarly, 

*
Ay

*

*
B

B

By
Dy

is the ‘true’ cost of production index for 

output * .By The geometric mean of the two is a Fisher-type cost of production index and 

reflects the contribution of input price differences towards the cost competitiveness of A. 

The scale bias of input price change is shown in Figure 4. Along the average cost curve 

AC(wA, y) *
Ay is the efficient production scale. Similarly, *

By is the efficient scale for 

AC(wB, y). The ratio 
*

*
A

A

Fy
Cy

is the cross price scale efficiency of * .Ay Similarly, 
*

*
B

B

Ey
Dy

is the 

cross price scale efficiency of The scale bias of input price change is the square root 

of the ratio of these two cross price scale efficiencies. If the ratio is greater than unity, 

* .By

*
Ay can be broadly interpreted as relatively more scale efficient than * .By  Of course, when 

the technology is homothetic, both average cost curves attain their respective minimum 

points at the same level of output. In that case, there is no scale bias of input price 

difference. 

Dynamics of Cost Competitiveness over Time: 

 

Although firms continuously strive to become more competitive by lowering their 

average costs, how the cost competitiveness index of a firm changes over time depends 

upon the rates of change in the average costs of both itself and its rival.  The dynamics of 

cost competitiveness of A relative to B can be captured by the ratio 
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1 1

1

1

1
|

|

.

t t
B B
t
A
t t
B A
t t
A A

AC ACt
AC ACA B

t AC AC
A B AC AC

CCI
CCI

+ +

+

+

+

= =
t
B              (27) 

 

Define the average cost index of the firm j (j = A, B) 

 

  
1

( ,
t
j

j t
j

AC
ACI j A B

AC

+

= = )           (28) 

 

In order to track the change in the cost competitiveness of A relative to B, we need to 

focus on the average cost index of the two individual firms. In what follows, we focus on 

the change in the average cost of an individual firm between two periods: 0 and 1. Hence, 

a subscript identifying the firm is no longer used except where necessary. 

Let xt and wt be the input quantity and price vectors for the firm in period t and yt be its 

output quantity. Then its cost competitiveness of the firm (relative to itself) over time can 

be measured as 

 

  

0 0

0

1 1

1

1|0 .
w x

y

w x
y

CCI
′

′
=    (29) 

 

In an inter temporal context one must accommodate the possibility of technological 

change over time and define the period-specific production possibility set 

 

 Tt = {(x, y): y can be produced from x in period t }.    (30) 

 

Correspondingly, 

    (31)  ( , ) min :( , ) .tC w y w x x y T′= t∈

In a two period comparison, 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )
( )

0

0

1

1

0 0
0 0

0 0
00

1 1
1 1

1 1
11

0 01 1
01

1 0

0 0 1 1
0 1

0 1

0 0
0

0

1 1
1

1

1|0

( , )

( , )

( , )

( , )

( , )( , )

( , ) ( , )

( , )

1

( , )
0

.

.

.
(32)

.

. .

C
y
C
y

C C w y
yC w y

C C w y
yC w y

C w yC w y
C y

C w y C w y
C y

C w y
y

C w y
y

CCI

CE
CE

==

=

=

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

             

 

 

 

 

 

 

 

 

Now, 

  

( )
( )

1 1 *
1

*
1

0 0 0 0 *1 1 1
0 0

* *0 0 0
0 0 * 1 1 *1 1

0 11
*1

1 1
0 0

0

0

0 0 *
0

*
0

1 1 *
1

*
1

( , )

( , ) ( , )( , )

( , ) ( , )( , )

( , )

( , )

1

( , )
0

. .

C w y
y

C w y C w yC w y
y y y

C w y C w yC w y
y yy

C w y
y

C w y
y

C w y
y

SE
SE

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (33) 

Next  

 

                   

0 0 * 0 1 *
0 0

* 0 0 *
0 0

0 1 *1 1 * 1 1 *
01 0

* *
1 1

( , ) ( , )

( , )

( , )( , ) ( , )
.

C w y C w y
y C w y

C w yC w y C w y
y y

⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢= ⎣ ⎦⎢ ⎥ ⎢

⎣ ⎦ ⎣

*
0 .y

⎤
⎥
⎥
⎦

  (34) 

Alternatively, 

 

      

0 0 * 0 0 *
0 0

* 1 0 *
0 1

1 1 *1 1 * 1 0 *
11 1

* *
1 1

( , ) ( , )

( , )

( , )( , ) ( , )
.

C w y C w y
y C w y

C w yC w y C w y
y y

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢= ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

*
0 .y ⎥    (35) 

Taking the geometric mean of the two 
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1
0 0 * 0 1 * 0 0 * 2

0 01
* *0 0 * 1 0 * 2
0 00 1

0 1 * 1 1 *1 1 * 1 1 * 1 0 *
0 11 0

* **
1 11

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )( , ) ( , ) ( , )
. . .

C w y C w y C w y
y yC w y C w y

C w y C w yC w y C w y C w y
y yy

⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢= ⎣ ⎦⎢ ⎥ ⎢

⎣ ⎦ ⎣

0
*
0

1

.y
⎤
⎥
⎥
⎦

  (36) 

 

The first factor on the right hand side of (36) is a ‘cost of production index’ and measures 

the effect of input price change. A value greater than unity implies that prices are, in 

general, lower in period 1 than in period 0 improving the competitiveness of the firm over 

time. 

The other factor can be broken up as 

 

 

1
0 1 * 0 0 * 2

0 0
* *
0 0

1 1 * 1 0 *
0 1

**
11

1
1 1 * 0 0 * 2

1 11
* *0 1 * 0 0 * 2
1 10 1

1 1 * 1 0 * 1 1 * 0 0 *
0 1 0 0

* *
0 0

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

.

. .

C w y C w y
y y

C w y C w y
yy

C w y C w y
y yC w y C w y

C w y C w y C w y C w y
y y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎣ ⎦ ⎢ ⎥

⎣ ⎦
.

  (37) 

The first factor is a geometric mean of autonomous shift in the cost function (measured at 

two output levels, and ) due to technical change. A value of this ratio greater than 

unity implies that the cost function has shifted downwards between period 0 and period 1 

due to technical progress. It is a cost-indirect measure of technical change. 

*
0y *

1y

Finally, the other factor on the right hand side of (37) can be expressed differently as 

  

11
0 0 * 1 1 * 21 1 * 0 0 * 2

1 11 1
0 0 * 1 1 ** *

0 01 1
1 1 * 0 0 * *

0 0 1
** *
00 0

( , ) ( , )( , ) ( , )
( , ) ( , )

( , ) ( , )

.
. .

C w y C w yC w y C w y
C w y C w yy y

C w y C w y y
yy y

⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥ =

⎢ ⎥
⎣ ⎦

 (38) 

 

 The denominator is the ratio of the efficient output scale in the two periods. When 

, it implies that the region of scale economies along the cost curve is 

bigger than the corresponding region of scale economies along the cost curve  

The reverse is true if the output ratio in the denominator is less than unity. It is important 

to note however, that because the cost function is (at least weakly) monotonic in the 

output, if the denominator is greater (less) than unity, so must be each ratio in the 

*
1y y> *

0

.

1 1( , )C w y

0 0( ,C w )y
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numerator of (38). Consider, for example, the ratio 
0 0 *

1
0 0 *

0

( , )

( , )
.C w y

C w y
When  

Thus, 

* *
1 0 ,y y>

0 0 * 0 0 *
1 0( , ) ( , )C w y C w y> .

0 0 *
1

0 0 *
0

( , )

( , )

C w y
C w y

is a gross measure of the change in the total cost a

the output increases. A similar interpretation applies also to the other ratio 

s 

1

1

(

(

C w
C w

whole expression is less than unity, we can see that although the efficient scale of outp

is bigger in period 1, the total cost does not increase proportionately. This factor may be 

interpreted as the scale bias of technical change. Note that unlike the other factor that 

measures the shift in the cost function, this one relates more to the curvature of the cost 

function. 

1 *
1

1 *
0

, )

, )

y
y

. If the 

ut 

 

Putting all the pieces together, a full blown decomposition of the cost-competitiveness 

index is: 

                      [ ] [ ] [ ] [ ] [0

1

. . . .CEC SEC IPC TC SBTC= =1|0

ACCCI
AC

]   (39) 

In this decomposition 

 

( )
( )

1 1
1

1

0 0
0

0

( , )

1

( , )
0

C w y
C

C w y
C

CECEC
CE

= =  is Cost Efficiency Change. 

Cost Efficiency Change can be further broken up as  

1 1

0 0

.
CE TE AECEC
CE TE AE

⎡ ⎤ ⎡
= = ⎢ ⎥ ⎢

⎣ ⎦ ⎣
1

0

⎤
⎥
⎦

 

showing changes in technical and allocative efficiencies. 

 

                   

1 1 *
1

*
1

1 1
1

1
0 0 *

0
*
0

0 0 0

0

( , )

( , )

1

( , )
0

( , )

C w y
y

C w y
y

C w y
y

C w y
y

SESEC
SE
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

 is Scale Efficiency Change. 

1
0 1 * 0 1 * 2

0 0
0 0 * 0 0 *

0 0

( , ) ( , )

( , ) ( , )

C w y C w y
C w y C w y

IPC ⎡= ⎣
⎤
⎦  is a measure of input price change. 
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1

1 1 * 1 0 * 2
0 1

1 * 0 0 *
0 1

( , ) ( , )

( , ) ( , )o
C w y C w y
C w y C w y

TC ⎡= ⎣
⎤
⎦  is a measure of Technical Change. 

Finally,  

 

1
0 0 * 1 1 * 2

1 1
0 0 * 1 1 *

0 0

*
1
*
0

( , ) ( , )

( , ) ( , )
.C w y C w y

C w y C w y

y
y

SBTC
⎡ ⎤
⎣= ⎦ is the Scale Bias of Technical Change. 

The two new concepts that become relevant in the context of changes in competitiveness 

over time are technical change and scale bias of technical change. Figure 5 shows the 

total cost curves for two different time periods, 0 and 1, and for two different input price 

vectors, w0 and w1. The output level, and are the efficient production scales (where 

respective average cost curves reach their minima) for C0(w0, y) and C1(w1, y). Note that 

need not be the efficient scale for C0(w1, y). Similarly, need not be the efficient 

scale for C1(w0, y). The ratio 

*
0y *

1y

*
0y *

1y
*

1 0
*

0 0

D y
D y

measures the shift in the cost curve at constant input 

prices w1 between the periods 0 and 1 at the output level . Similarly, *
0y

*
1 1

*
0 1

E y
E y

 measures the 

shift in the cost curve at constant input prices w0 between the periods 0 and 1 at the output 

level *
1 .y Technical change is measured by the geometric mean of the two ratios. 

Scale bias of technical change has two features. The first relates to a change in the range 

of output over which economies of scale are present. As shown in Figure 5, in period 0 

and at input prices w0 economies of scale prevail up to the output level *
0y . By contrast, in 

period 1 scale economies (at input prices w1) are not exhausted until the higher output 

level is reached. The other aspect of the scale bias relates to the change in the total cost 

along the cost curves relevant for the two periods as the efficient scales of production 

change. As can be seen from Figure 5, The proportionate increase in the cost along the 

total cost curve C0(w0, y) as output increases from  to is 

*
1y

*
0y *

1y
*

0 1
*

1 0

B y
D y

where as along the total 

cost curve C1(w1, y) it is 
*

0 1
*

0 0
.B y

E y
A geometric mean of the two results in a much smaller 

value that what we get from the period-0 cost curve. The overall ratio represented by the 

scale bias of technical change is less than unity. In this example, technical change favors 

period 1 over period 0 because the region of scale economies is extended and also the 
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proportionate increase in total cost (between the smaller and the large efficient scale) is 

less than the in increase in output scales. One needs to remember here that the technical 

change and the scale bias both relate to the entire technology and are not specific to the 

actual input outputs of the firm in the two periods.  

 

3. The Nonparametric Methodology 

 In order to carry out the decomposition of the dynamics of cost competitiveness 

described above one needs to estimate the various cost functions at different input prices 

and for different technologies from actual output quantity and input price and quantity 

data. The two commonly employed empirical methods are the parametric econometric 

approach of stochastic frontier analysis (SFA) and the nonparametric linear programming 

method of Data Envelopment Analysis (DEA). In SFA one specifies an explicit form of 

the cost function and uses the maximum likelihood procedure to estimate the parameters 

of the specified function. In DEA, by contrast, one makes a number of fairly weak 

assumptions about the technology but leaves the functional form of the fitted cost frontier 

unspecified. 

In DEA one starts from a sample data set of observed input-output bundles ( , )j
jx y  

( 1, 2,..., )j N= from a number of firms from some industry and makes the following 

assumptions about the technology: 

• All observed input-output bundles are feasible. 

• The production possibility set is convex. 

• Inputs are freely disposable. 

• Outputs are freely disposable. 

Based on these assumptions, an empirical estimate of the production possibility set  (T) 

would be 

    (40) 
1 1 1

( , ) : ; ; 1; 0;( 1,2,..., ) .
N N N

j
j j j j jS x y x x y y j Nλ λ λ λ⎧ ⎫= ≥ ≤ = ≥ =⎨ ⎬

⎩ ⎭
∑ ∑ ∑

This set is often described as the free disposal convex hull of the observed input-output 

vectors. In the inter temporal context, one constructs two different sets S0 and S1 using 

only the data points from that time period. 
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The cost function evaluated at some specific output level and at given input 

prices w is obtained by solving the linear programming problem: 

( , )tC w y

  

1

1

1

min

. . ;

;

1;

0; ( 1, 2, ..., ).

N
j

j t

N

j tj

N

j

j

w x

s t x x

y y

j N

λ

λ

λ

λ

′

≤

≥

=

≥ =

∑

∑

∑

   (41)  

In the problem above, j
tx is the input bundle and tjy is the output of firm j in period t.  

Nonparametric Measure of the Efficient Production Scale 

 

The question of a minimum point of the average cost curve arises only when the 

technology exhibits variable returns to scale. However, two important points need to be 

noted. First, locally Constant Returns to Scale holds at the input-output bundle (x*, y*) 

where the average cost reaches a minimum. Second, when the technology exhibits 

Constant Returns to Scale globally, average cost is a constant at all output level. Taking 

advantage of these two properties of the cos function, Ray (2011) proposed the following 

approach to measuring the efficient output scale. 

 

Solve the following CRS cost minimization problem for the unit output level:  

 

1

1

min

. . ;

1;

0; ( 1,2,..., )

N
j

j

N

j j

j

w x

s t x x

y

j N

λ

λ

λ

′

≤

≥

≥ =

∑

∑   (42) 

Suppose that the optimal solution of (42) is{ }* *; ( 1, 2,..., )jx jλ = N . Define * *

1

.
N

jk λ=∑  
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As shown in Ray (2011), the efficient scale of output where the average cost reaches a 

minimum is 

  *

* 1 .
k

y =    (43) 

   

4. An Empirical Application with U.S. Manufacturing Data 

In this example we use data constructed from the U.S. Census of Manufacturers for the 

years 1992, 1997, 2002, and 2007 to examine the dynamics of cost competitiveness for a 

number of states from the Continental U.S. In particular, we focus on the sates of: 

California (CA), Indiana (IN), Massachusetts (MA), Michigan (MI), New Jersey (NJ), 

New York (NY), North Carolina (NC), Texas (TX), and Virginia (VA). While not an 

exhaustive list of leading manufacturing states in the country, this group includes states 

like MI which has long been an important manufacturing state in the Rustbelt as well as 

emerging industrial stets like NC and VA from the Sunbelt.  

We conceptualize a 1-output, 5-input production technology and use data constructed 

from the various Census years1. It is assumed that in any given year there is no difference 

in the technology across the states within the continental US. Given the fact that the 

market for manufactured goods is nationally integrated, we assume that the output price 

does not vary across states so that the value of output is a reasonable measure of the 

quantity produced. Input prices, however, do vary across states. 

 

 We treat the average (i.e. per firm) input-output bundle as a data point from each state 

and the production possibility set is constructed as the free disposal convex hull of these 

points. Output is measured by the gross value of production. The gross output value is 

adjusted by the producer’s price index and output quantities from different years are 

measured in constant 1992 dollars. The inputs included are (a) production labor (L1), (b) 

non-production labor (L2), (c) capital (K), (d) energy (E), and (e) materials (M). 

Production labor is measured by the number of hours worked. The corresponding input 

price is wage paid per hour to production workers (w1). The other labor input is the 

number of non-production employees. The corresponding wage rate (w2) is total 

                                                 
1 A similarly constructed (cross section) data set for the year 2002 was used in Ray, Chen, and Mukherjee 
(2008) and was included in the data appendix to the paper by the authors. 
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emolument per employee. The capital input is the average of beginning-of-the year and 

end-of the year (nominal) values of gross fixed assets. The value of fixed assets was 

inflation-adjusted using the producer’s price index of machinery and transport equipment. 

The capital input price (i.e. user cost), pK, is measured by the sum of depreciation, rent, 

and (imputed) interest expenses per dollar of gross value of capital. The quantity of the 

energy input (E) is constructed by deflating the expenditure on purchased fuels and 

electricity by state specific energy price (pE)2. Total expenditure on materials, parts, and 

containers is used as a measure of the materials input quantity (M). By implication, 

materials price (pM) was set equal to unity for every state. However, for inter temporal 

compatibility the material input quantity was adjusted by the overall producer’s price 

index for primary articles.  

 

Table 1 shows the production cost per dollar of output in the selected states over the 

different Census years. In 1992 VA had the lowest average cost of 64.5 cents while NY 

came second with 65.1 cents. At the other end, MI (78.7 cents) and TX (76.5 cents) led 

IN and CA (also with average cost exceeding 70 cents). By the year 2007, NC had 

clearing emerged as the most competitive of all of the states in this group with a 

significant decline in average cost over the years. This is in sharp contrast with the other 

states most of which experienced increase in average cost. By 2007, average cost in TX 

exceeded that in NC by a wide margin of nearly 20 cents per dollar of output. 

Table 2 tracks the change in average cost in the different states between successive 

Census years. Between 1992 and 1997 all states in the group considered except NY and 

VA experienced a decline in average cost. The biggest decline was in NJ. Between 1997 

and 2002 average cost increased in 6 out of 9 states while it declined in NY, NC, and VA. 

Finally, between 2002 and 2007, again average cost increased in all states except NC and 

TX. Overall, NC is the only state that saw a decline in average cost over the entire period. 

Table 3 provides a snapshot picture of cost competitiveness of NC relative to the other 

states. Note that the CCI reported in the last column of this table is the ratio of the 

average cost in the other state to the average cost in NC and can be calculated from the 

                                                 
2 We use the industrial sector total energy price for the relevant years (measured in nominal dollars per 
million Btu). Source: US Energy Information Administration. 
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top row of Table 1. NC was cost competitive relative to all other states except NY and 

VA. The other columns of this table show the factors that contribute to cost 

competitiveness of NC. Overall cost efficiency was higher in NC than in the rival states 

except for NY, VA and MA (although slightly). Interestingly, lower cost efficiency 

relative to NY and VA was entirely due to worse allocative efficiency because technical 

efficiency in NC was equal or better than the rival state in all cases. Scale efficiency in 

NC was worse than in all states except IN. The column headed IPC shows that the cost of 

production (for the same output level) would be higher in all of the other states than in 

NC. Thus, NC enjoyed a large input price advantage. Finally, there was no scale bias of 

input price differences. Although average costs would be different for the different input 

prices in the different states, in all cases the minimum point of the average cost was 

attained at the same output level ($611.4 million) in 1992. 

 

Table 4 shows the decomposition of cost competitiveness index of the individual states in 

2007 relative to 1997. The index is measured for each state as  

  1997

200707|97 .AC
ACCCI =  

As was seen in Table 1, average cost in 2007 was higher in all of the states except NC 

where it fell from 64.5 cents to 60.3 cents. Among the other states NJ saw the worst 

decline in competitiveness (by 11.2%). All states saw an improvement in cost efficiency. 

Improvement by more than 20% was found in NC and TX. Increase in cost efficiency in 

virtually all states was driven mainly by increase in allocative efficiency. Technical 

efficiency increased in some states and declined in others but the change in either 

direction was much smaller. Scale efficiency also improved for all states. In several cases 

(IN, NY, NC, and VA) the improvement exceeded 25%. However, input price change, 

technical change, and scale bias of technical change adversely affected cost 

competitiveness in all states. As shown by the input price change (IPC) column, 

compared to 2007 input prices in 1997 were lower by nearly 10%. Also, the technical 

change (TC) column shows that even if input prices remained unchanged, the same 

output level would cost at least 20% less in 1997 than in 2007. This implies a significant 

upward shift in the cost function due to technical regress. Finally, the scale bias of 

technical change also hindered competitiveness in all states. In fact, the efficient 
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production scale of an average firm declined from $11.4 million in 1997 to $9.5 million 

in 2007. However, while the output declined by 17.6%, the cost declined by only 14.7%.  

The overall conclusion is that while improvement in cost efficiency (due mainly to higher 

allocative efficiency) and in scale efficiency contributed positively to competitiveness, 

increase in input prices, technological regress, and scale bias of technical change had a 

negative impact. The end result was that while NC alone significantly improved cost 

competitiveness all other states fell behind. 

 

The analytical format proposed in this paper may become quite useful for policy. As is 

apparent, there are several components of cost competitiveness that are within the control 

of the firm while others are not. For example, improving cost efficiency through 

elimination of technical and allocative inefficiency is clearly a task for the management. 

Increasing scale efficiency would require altering the level of output. Whether that would 

be profitable would depend on market demand factors. At the state or regional level, 

however, one can think about meeting the given market demand by altering the number 

of firms through consolidation of multiple small firms or breaking up large ones. Of the 

remaining components of competitiveness, the input price factor is what business owners 

complain most loudly about. Virtually in all states, Chambers of Commerce in different 

communities lament that high wage and energy costs that they claim to be undermining 

their competitiveness. The model proposed here can allow one to measure the extent a 

certain percentage reduction in one input price (like a 10% wage cut) would lower the 

true cost of production index of the firms in the state. As for the technical change and the 

accompanying scale bias, there is little that any individual firm or state can do. It needs to 

be clarified that the popular perception of a switch from labor intensive to capital 

intensive processes is not technical change. It is merely a change in input proportions that 

occurs when a firm moves from one point to another on the same isoquant. Moreover, 

technical change, as already mentioned above, is a property of the entire production 

function. Because no firm has exclusive access to the technology, it basically is a public 

good. To what extent, a firm can benefit from technical change when it occurs, is a matter 

of efficiency. 
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5. Conclusion 

Cost competitiveness of a nation or a region within a nation depends as much on its own 

productivity as that of its rivals. Improvement in efficiency in resource utilization and 

also full exploitation of scale economies improves cost and scale efficiency making the 

region more cost competitive. To the extent that higher input prices are due to market 

imperfections, lowering the cost of production would help. At the sub-national level a 

state can gain limited competitive advantage from a lower wage rate. In the international 

context, where technological differences may exist across countries, fostering 

technological progress should be an important part of long term economic policy. 
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              Table 1 Production cost per $ of Gross Output (1992constant $) 

Year CA IN MA MI NJ NY NC TX VA 

1992 0.701 0.737 0.684 0.787 0.697 0.651 0.669 0.765 0.645 

1997 0.668 0.721 0.650 0.750 0.645 0.669 0.645 0.719 0.648 

2002 0.697 0.726 0.670 0.786 0.675 0.631 0.630 0.789 0.627 

2007 0.703 0.735 0.706 0.801 0.726 0.671 0.603 0.779 0.674 

 

 

                      Table 2 Change from the previous Census Year 

      Average Cost Index           

Year CA IN MA MI NJ NY NC TX VA 

92-97 0.954 0.979 0.951 0.953 0.925 1.027 0.963 0.94 1.004 

   97-02 1.043 1.007 1.031 1.049 1.047 0.943 0.976 1.097 0.968 

02-07 1.009 1.013 1.053 1.018 1.075 1.064 0.958 0.988 1.075 

 

 

                            Table 3 Decomposition of Cost Competitiveness of North Carolina 

year State CE TE AE SE IPC N_HOMO CCI 
1992 CA 1.044 1.015 1.028 0.922 1.087 1 1.047 
1992 IN 1.056 1.06 0.997 1.002 1.04 1 1.1 
1992 MA 0.996 1 0.996 0.932 1.1 1 1.021 
1992 MI 1.096 1.04 1.054 0.968 1.108 1 1.175 
1992 NJ 1.027 1 1.027 0.932 1.087 1 1.041 
1992 NY 0.976 1 0.976 0.918 1.086 1 0.973 
1992 NC 1 1 1 1 1 1 1 
1992 TX 1.148 1.019 1.126 0.969 1.027 1 1.143 
1992 VA 0.976 1 0.976 0.976 1.011 1 0.964 

 
             
               Table 4 Decomposition of Cost Competitiveness Index (2007 over 1997) 

State CEC TEC AEC SEC PC TC SBTC 07|97CCI  

CA 1.148 0.996 1.153 1.162 0.931 0.794 0.965 0.951 

IN 1.101 1.026 1.073 1.267 0.941 0.774 0.965 0.981 

MA 1.176 1.000 1.176 1.129 0.905 0.795 0.965 0.921 

MI 1.133 0.943 1.201 1.192 0.926 0.778 0.963 0.937 

NJ 1.136 0.981 1.158 1.150 0.902 0.784 0.963 0.888 

NY 1.126 1.021 1.102 1.262 0.918 0.790 0.967 0.996 

NC 1.215 1.000 1.215 1.265 0.908 0.791 0.969 1.070 

TX 1.222 1.046 1.169 1.117 0.892 0.785 0.965 0.923 

VA 1.114 0.958 1.163 1.255 0.908 0.784 0.966 0.961 
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Abstract 

Most empirical Data Envelopment Analysis (DEA) models analyzing efficiency 
and productivity of vessels in multi-species fisheries typically assume that all 
inputs are discretionary.  However, some factors influencing output are exogenous 
and beyond the control of the vessels.  In this paper, we present models useful for 
controlling nondiscretionary inputs and employ a conditional estimator of 
technical efficiency.  For illustrative purposes, we apply the model to analyze 
vessel efficiency while controlling for vessel size and a measure of depletion due 
to competition. 

 Keywords:  Efficiency, nondiscretionary inputs, data envelopment analysis,  



1. Introduction 

The principal challenge in productivity estimation of fishing vessels is the limited data 

that exist on vessel operations.  In particular the lack of input price data for most fisheries 

constrains the models available to the analyst.  Regression-based approaches to the problem of 

estimating productivity, technical efficiency and/or harvesting capacity in the absence of input 

prices have been employed by Segerson and Squires (1990), Felthoven and Morrison-Paul 

(2004) and Felthoven, Horrace and Schnier (2009) among others. 

A popular alternative to the regression based approaches is Data Envelopment Analysis 

(DEA), a linear programming model that evaluates each production possibility relative to a 

piecewise linear frontier.  DEA, coined by Charnes, Cooper and Rhodes (1984), built on the 

pioneering work of Farrell (1957) by allowing multiple inputs and outputs assuming constant 

returns to scale.  Banker, Charnes and Cooper (1984) extended DEA to the variable returns to 

scale technology of Afriat (1972).  In addition to allowing multiple outputs, the approach is 

axiomatic and hence does not require a priori specification of the production function.  A sample 

of applications of DEA to the problem of estimating fish production functions include Kirkley et 

al. (2003), Walden et al. (2003) and Fare et al. (2006).    

A second challenge that arises in the analysis of productivity and efficiency among 

commercial fishermen is how to incorporate non-discretionary inputs to the production function.  

The potential importance of non-discretionary inputs in fish production was recognized by 

Kirkley, Squires and Strand (1995).  Since then, particular attention has been paid to the impact 

of one particular non-discretionary input: the resource stock (Kirkley et al. (1998), Pascoe et al. 



(2001) and Andersen (2005)).  This paper develops a general DEA model which incorporates 

non-discretionary inputs into productivity analysis and provides a fisheries application. 

The standard DEA models allow discretionary inputs and outputs.  Banker and Morey 

(1986) extended the model to allow nondiscretionary variables.  However, their extension 

assumed convexity with respect to the nondiscretionary inputs.  Ray (1991) provided a two-stage 

model; DEA was applied to the discretionary variables and a second-stage regression controlled 

for the nondiscretionary inputs. Ruggiero (1996) extended the Banker and Morey model with a 

conditional estimator that did not assume convexity. A limitation of this model was the curse of 

dimensionality – as the number of nondiscretionary inputs increased, the model tended to find 

efficiency by default.  Ruggiero (1998) developed a three stage model that used Ray’s model to 

construct an environmental harshness index which was incorporated into a third stage using the 

Ruggiero (1996) model. 

In this paper, we explore the measurement of efficiency in the California Limited Entry 

Groundfish Trawl (groundfish trawl) fishery using data envelopment analysis. The groundfish 

trawl has historically been one of California’s most valuable fisheries1 and has been analyzed 

previously in the literature (see e.g. Squires and Kirkley (1999), Mason et al. (2011) and Collier 

et al. (2012).)  In this paper, we focus on the measurement of efficiency and returns to scale in 

the presence of nondiscretionary factors of production. 

Our paper contributes to the applied production economics literature by controlling for 

nondiscretionary inputs in fishery applications.  We present the conditional estimator to control 

for the fixed factors.  We apply the method to estimate efficiency and the environmental 

                                                            
1 Using data on West Coast commercial fishing revenues from the PacFIN database we summed total revenue for 
each fishery, for all landings in California from the period 1981 – 2007.  The groundfish trawl fishery ranked second 
among all commercial fisheries in this database.   



harshness of vessels operating in multi-species fisheries for illustrative purposes.  The rest of the 

paper is organized as follows.  In the next section, we introduce the technology and discuss 

estimation of efficiency in the presence of nondiscretionary factors.  In section 3, we apply the 

model to the fishery data.  The last section concludes. 

2. Technology with Nondiscretionary Inputs 
 

We assume that each of n vessels uses a vector 1( ,..., )mX x x of m discretionary inputs to 

produce a vector 1( ,..., )sY y y  of s outputs while facing an environment represented by an 

exogenous (nondiscretionary) variable z . Individual vessel production data for vessel 

( 1,..., )j j n  are given by 1( ,..., )j j m jX x x , 1( ,..., )j j s jY y y  and jz .  The empirical production 

possibility set assuming variable returns to scale is given as:
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The technology in (1) allows variable returns to scale for any given level of the 

nondiscretionary variable in the standard sense of changing the scale of operation with respect to 

the discretionary inputs.  Also, we assume that output is monotonic with respect to the 

nondiscretionary input; larger values of z  imply a favorable operating environment where the 

school should produce at least as much output for any given mix of discretionary inputs. 



 Based on (1), technical efficiency of vessel ( 1,..., )i i n  is estimated as the solution to 

the following linear program: 
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             (2) 

Here, the frontier is defined for each level of the non-discretionary input assuming variable 

returns to scale with respect to the discretionary inputs.2 

 The measurement of efficiency relative to the technology characterized by exogenous 

factors of production is illustrated in Figure 1.  Here we assume that one discretionary input 

1( )x is used to produce one output 1( )y with one nondiscretionary factor of production 1( )z . Vessels A - 

D are observed with the most favorable environment with the highest level of the exogenous factor ( )Az  

while vessels E - H face a harsher envirnonment ( )E Az z . As shown, the vessels with the better 

environment are able to produce a given level of output with lower levels of the discretionary input.  

Alternatively, for a given level of the discretionary input, vessels with a better environment are able to 

produce more output.  It is assumed that vessels A – D and F – H are technically efficient, each producing 

observed output with the least amount of discretionary inputs possible given its environment. 

                                                            
2Essentially, this model, due to Ruggiero (1996), assumes selective convexity for a given level of nondiscretionary 
input.  See Podinovski (2005) for further discussion. 
 



 The only vessel that is technically inefficiency in Figure 1 is E.  Given nondiscretionary factor 

Ez , E should be able to produce its observed output 1Ey using only 1E ETE x of the discretionary input.  As 

shown, this is a convex combination of two vessels (F and G) that also have the same environment Ez .  If 

we employ the standard DEA model with only the discretionary variables, vessel E would be projected to 

an infeasible point defined by a convex combination of A and B, both of whom have the more favorable 

environment. 

 Following Ruggiero (2000), we can obtain information on the effect of the exogenous variable by 

also solving the DEA model for each vessel ( 1,..., )i i n  using only the discretionary variables: 
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Model (3) differs from (2) with the exclusion of the constraint on the nondiscretionary variable.  

Returning to Figure 1, we see the resulting projection to the convex combination of A and B for inefficient 

vessel E discussed above.  The solution reveals the minimum level of discretionary input necessary to 

produce output 1Ey if vessel E had the most favorable environment.  For technically efficient vessels F – 

H we find that 1i  meaning that these vessels have to use more of the discretionary input to 

compensate for the harsher environment. 



 Combining (2) and (3), we obtain information regarding the effect the exogenous variable has on 

the production environment; for vessel j ( )j j ljTE x  measures the extra amount of input l that is needed 

to compensate the vessel for its environment.  If j jTE   then no extra inputs are necessary.  Likewise, 

the ratio ( / ) 1j jTE  , which we call the environmental index provides a measure of environmental 

harshness and indicates the reduction in discretionary inputs that could have been possible if the vessel 

faced the best environment, after eliminating inefficiency.  

3. Illustrative Example 
 

The groundfish trawl fishery is one of California’s largest commercial fisheries, both in 

terms of pounds of fish landed and revenue generated by the fleet.  The fishery is regulated by 

species-specific catch limits, gear restrictions, and area closures.  Recently the fishery 

transitioned into quota management, although our analysis utilizes data from before this 

management shift3.   

The data for this analysis consist of trawl logbook4 reports collected by California 

Department of Fish and Game for boats with limited entry groundfish permits in 2007. We 

utilize only trips from the most recent year (2007) in our data set and only trips fishing 

exclusively in California waters.  Logbooks contain trawl locations defined by start and end 

points of each tow, hours towed, the weight and market category of fish landed from the tow, and 

landing port.  Although our data provide an extremely fine breakdown of species harvested, we 

use landings and reported output prices to construct a single output: groundfish revenue.  In 

                                                            
3 Under the catch limits management regime each vessel was allowed to land only a limited weight of key targeted 
species.  These limits varied by two-month period and were occasionally adjusted during the year to ensure that total 
catch of any one species did not exceed the target. 
4 Logbooks are an important data source for economists studying fisheries issues.  For more detailed information on 
how these data are collected and organized see Sampson and Crone (1997, Chapter 4) or the Pacific States Marine 
Fisheries Commission website: http://pacfin.psmfc.org/pacfin_pub/trawllog.php. 
 



analysis of multi-species fisheries it is common to aggregate individual outputs to a sensible 

dimensionality (Terry et al., 2008; Fare et al., 2006; Dupont et al., 2002).  In this application we 

choose to simplify the problem to one involving only a single output in order to retain focus on 

the key modeling issue of incorporating non-discretionary inputs to the fish production function5.   

Using the logbook data, we created a new variable to account for environmental factors 

outside the control of the vessel operator.  Using longitude and latitude data from the log books, 

we divide the study area into square blocks one sixteenth of a degree by one sixteenth of a 

degree.  We then calculated the number of tow hours each vessel spent in each grid on each trip.  

Then we were able to calculate the total effort (measured in tow-hours) in each grid at a given 

time for the fishery as a whole.  Finally, we created a measure of crowding for each vessel based 

on the weighted average of effort in each grid that a vessel fished in a given trip, where the 

weights are the portion of the total trip spent in each grid.  In empirical illustration we utilize this 

measure of crowding over a 14-day period. 

Much of the previous work on incorporating non-discretionary inputs into the fish 

production function has focused on ways to condition output estimation on the state of the 

resource stock.  A complication for regression based models in this endeavor is finding fishery 

independent estimates of stock abundance in order to avoid potential endogeneity problems 

associated with using contemporaneous catch rates to proxy for stock size.  Kirkely et al. (1995, 

2002 and 2004) provide three possibilities for using observed catch and effort data to measure 

fish stocks in an SPF framework.   

                                                            
5 The use of total fishery revenue as a multi-species aggregation method has been employed by Sharma and Lueng 
(1999) and Pascoe and Coglan (2002).   



Our analysis takes a slightly more general view of non-discretionary inputs into fish 

production.  We note that our variable indicating the level of crowding faced by a particular 

vessel on a trip is an attempt to control for spatial variations in resource availability and is 

consistent with the economic literature on crowding externalities in commercial fisheries, which 

began with Scott (1957) and Smith (1969).  Crowding externalities, also sometimes referred to as 

interference competition, have also been addressed in the marine ecology literature by Hilborn 

(1985), Gillis et al. (1993) and Rijinsdorp and Poos (2007).  Of particular note, with respect to 

our application, is the work of Dalton and Ralston (2004).  The authors found crowding 

externalities associated with spatial closures to have significant impacts on the cost structure of 

groundfish harvesters on California’s Central Coast.    

 We ran model (2) on monthly sub-samples of the data described above for each month in 

2007 at the trip level.  Using monthly sub-sample allows us to avoid problems with seasonality 

and differing catch restrictions.  Results are displayed in Table 2.  Average vessel efficiency over 

the twelve separate monthly estimates was 0.844, with a high of 0.898 in November and a low of 

0.717 in September.  Average environmental harshness was 0.84 over the entire twelve months, 

with a high of 0.937 in December and a low of 0.773 in May.  This measure tells us the reduction 

in discretionary inputs that could have been possible if the vessel faced the best environment, 

after eliminating inefficiency.  Thus, vessels operating in May could have reduced their input 

usage by 77-percent if they were able to operate in the best environment. 

4. Conclusions 
 

DEA has emerged as a popular methodology for estimating efficiency and productivity in 

fisheries applications because it provides a straightforward framework in which to model multi-

output technologies.  Past work on incorporating non-discretionary inputs into fish production 



have tended to rely on regression-based approaches because of the ease with which exogenous 

variables may be included in these models.  In this paper, we presented a nonparametric model of 

efficiency estimation where the technology set is conditioned on nondiscretionary inputs.  

Failure to properly control for these exogenous factors leads to technical efficiency estimates that 

are biased downward.  The model was applied to analyze vessel efficiency using 2007 data.  We 

argue that vessel size and crowding (recent competition in the general area) could be beyond the 

control of the vessels.  The results indicate that production is influenced by these factors.  Our 

model allows us to further identify an index of environmental harshness that measures the extra 

discretionary inputs necessary to compensate for adverse conditions.  

Although the practical implications of our empirical illustration are limited by a number 

of factors6, we believe the methodology presented here has some important and valuable 

extensions.  First, Johnson and Ruggiero (2011) show how the conditional estimator presented in 

(2) here can be used to construct a corrected Malmquist productivity index.  The Malmquist 

productivity index has been identified as potentially important tool for tracking productivity 

change in commercial fisheries over time (Walden et al. 2012).   Johnson and Ruggiero show 

how a DEA model incorporating non-discretionary inputs is used to construct an Environmental 

Malmquist Index which can be decomposed into changes in efficiency, changes in the operating 

environment, changes in technology and environmental technical change. 

In addition, Ouellette and Vierstraete (2004) utilize the Ruggiero’s (1996) conditional 

estimator, presented in (2) here, to incorporate quasi-fixed inputs as non-discretionary inputs.  

                                                            
6 In order to retain focus on the incorporation of non-discretionary inputs we employ a rather simple method of 
multi-species aggregation.  Extensions of this work will benefit from a more rigorous definition of the output set.  
Additionally, we did not investigate all possible sources of vessel heterogeneity in order to define the reference set 
of vessels.  In particular, many groundfish trawlers are also active participants in the West Coast crab pot fishery.  
We recognize that, in DEA applications such as this, it may be important to distinguish between vessels which are 
primarily groundfish vessels and vessels which are primarily dependent on the crab fishery, participating in the 
groundfish fishery infrequently.       



The implications of this procedure to fisheries applications are potentially useful.  In DEA 

models of commercial fishing it is common for the analyst to select a reference set of relatively 

homogenous vessels for each vessel in the sample.  This process usually involves selection of 

peer vessels based on similar vessel length, weight or engine horsepower.  The use of the 

conditional estimator to incorporate inputs fixed in the short-run may help reduce the amount of 

data preprocessing required in DEA models of commercial fishing.    

 

 



 
Figure 1:  Production with Nondiscretionary Inputs 
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Table 1:  Descriptive Statistics (N = 989) 
Variable Average Std. Dev. 

Output 6,267.11 4,842.21 
Tow Hours 16.15 12.07 
Days at Sea 2.13 1.05 
Vessel Length 57.87 10.69 
Crowding Measure 23.44 21.05 

Calculations by authors.   

   



 

            

Table 2:  Average Results, Year 2007 
    Efficiency Environmental Index 

Month N Average Std. Dev. Average Std. Dev. 
January 70 0.813 0.202 0.769 0.216 
February 41 0.801 0.259 0.840 0.201 
March 69 0.896 0.183 0.883 0.202 
April 79 0.865 0.193 0.768 0.219 
May 144 0.865 0.205 0.773 0.257 
June 92 0.876 0.215 0.808 0.221 
July 98 0.810 0.272 0.894 0.186 
August 110 0.869 0.202 0.847 0.191 
September 96 0.717 0.297 0.905 0.184 
October 97 0.840 0.206 0.827 0.193 
November 64 0.898 0.170 0.851 0.173 
December 29 0.877 0.174 0.937 0.119 

Calculations by authors. 
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serious issue is that the estimated capacity utilization rates can be relatively low. This may call 

for reductions in the fishing fleet that are political impossible to defend. In this paper two 

modifications of the traditional approach are explored. First, non-convex technologies are 

introduced and it is shown how the primal non-parametric approach leads to different capacity 

utilization rates. Then capacity utilization measures using cost functions are specified for both 

convex and non-convex technologies. It is illustrated how the convexity assumption impacts 

capacity utilization rates and how this dual approach differs from the primal approach. Second, 

the effect of utilizing these different convex versus non-convex capacity utilization rates in the 

short-run Johansen industry production model is explored in terms of the resulting policy 

conclusions. This model has been used to formulate realistic plans to implement fishery policies 
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1. INTRODUCTION 

Excess capacity of fishing fleets is one of the most pressing problems facing the world's 

fisheries and the sustainable harvesting of resource stocks. Since 1990, both world marine fish 

catches and the world-wide number of vessels have leveled off, albeit that vessel productivity 

has kept increasing. This has resulted in a situation where many species are fully or over-

exploited and with a general excess number of vessels. Adoption of the Precautionary Principle 

(= calling for resource stocks higher than those for maximal sustainable yield and 

correspondingly lower sustainable catch levels) by FAO exacerbates the excess capacity 

problem. 

The current situation generates pressure to harvest past the point of sustainability to keep 

the fishing fleet economically viable. With many vessels operating under little or no profits, 

reductions in fleet size become politically and socially harder to implement. Excess capacity 

encourages inefficient allocation and constitutes a major waste of economic resources. 

Overinvestment occurs: i.e., excessive amounts of variable inputs are used. Excess capacity also 

complicates the fishery management process, particularly in regulated open access fisheries, by 

frequently leading to micro-regulation. Excess capacity substantially reinforces the tendency for 

management decisions to become primarily (re)allocation decisions. 

The empirical analyses of technologies and related value functions (e.g., cost functions) 

have become standard methods of the applied economist. The traditional parametric, semi-

parametric and non-parametric specifications of technologies and value functions almost all 

maintain the axiom of convexity. However, it is well-known that a variety of reasons may 

generate non-convexities in technology (see Farrell (1959) for an early overview). One example 

is indivisibilities: the fact that inputs and outputs in production are not perfectly divisible and 

thus cannot be adjusted in a continuous way. Furthermore, indivisibilities limit the up- and 

especially the downscaling of production processes. In addition, economies of scale and 

economies of specialization as well as externalities are all well-known features violating the 

convexity of technology. Non-convexities create issues about the role of prices in defining 

equilibria.  

Furthermore, the impact of convexity is not limited to estimates based on the technology. 

Indeed, while it is widely ignored, already Jacobsen (1970) and Shephard (1970) indicated that 

the cost function is non-decreasing and convex (non-convex) in outputs when technology is 

convex (non-convex). Briec et al. (2004) proof a similar point: the cost function estimated on a 

convex technology is always smaller or equal to a cost function computed relative to on non-
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convex technology. Both cost functions are only identical under a single output and constant 

returns to scale. Though this potential impact of convexity is probably widely underestimated, it 

seems clear that convexity can then only be maintained if there is well-established empirical 

evidence that its impact on most or some specific applications is negligible. This evidence is 

largely lacking, simply because few studies have explicitly tested for the impact of convexity.  

Non-convexities have been documented for some particular industries. In electricity 

generation, non-convexities exist due to minimum up and down time constraints, multi-fuel 

effects, etc. This naturally leads to non-convex and non-differentiable variable cost function 

(e.g., Park et al. (2010)). In car manufacturing cost are non-convex due to changes in the number 

of shifts and the shutting down or not of plants for some time: Copeland and Hall (2011) find 

that a non-convex model fits their data best. Non-convexities have been applied in the non-

parametric productivity and efficiency literature on some occasions. Cummins and Zi (1998) as 

well as Grifell-Tatjé and Kerstens (2008) offer cost frontier estimates and cost efficiency ratios 

for USA life insurance and Spanish electricity distribution respectively that are different from 

convex results. For oil field petroleum data, Kerstens and Managi (2012) report substantial 

differences in a Luenberger productivity indicator between convex and non-convex technologies 

and only find convergence in productivity levels and variations for the latter technology. 

However, in the non-parametric literature on capacity the only paper on measuring 

fishing capacity under non-convex technologies is Kerstens, Squires and Vestergaard (2005). 

Thus, there is certainly a need for more studies in this direction. In fisheries, there have been 

parametric applications using both primal and dual approaches (see Morrison (1985) and 

Segerson and Squires (1990)). Also the non-parametric approach has been applied by numerous 

authors to fisheries all over the world (see e.g. Pascoe and Greboval (2003), Kirkley, Morrison-

Paul and Squires (2002) and Vestergaard (2005)). In several instances the calculated capacity 

utilization rates are relatively low. One could argue that this is expected under inefficient fishery 

management. But, when these low capacity utilization rates are plugged into planning models 

with the aim of restructuring the fleet this inevitably leads to high decommissioning rates. The 

latter results may not be easy to “sell” to policy makers. For researchers, it is important that the 

results are robust with respect to changes in the basic assumptions and to be sure that the 

conclusions obtained reflect the fishery technology and behavior of fishermen. Some 

considerations in that respect could be: 

 What is the relevant production period? (single trip, or longer?) 

 What are meaningful choices of inputs and outputs? (aggregation, bycatch, etc.). 
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 Is there any difference between the primal and dual approach? 

 Is the assumption of convexity appropriate? 

In this paper we primarily investigate the assumption of convexity in relation to existing 

notions of capacity utilisation. A multitude of other issues related to implementing capacity 

notions in fisheries have been discussed among others by Kirkley and Squires (1999). In Section 

two we develop some more detailed criticisms of convexity. Section three defines the 

technology and the cost function and explores the often neglected impact of convexity on the 

latter. An overview of economic and technical capacity utilisation concepts is discussed in 

Section four. The next section discusses the short-run Johansen industry model that can be used 

for planning purposes. Section six offers some preliminary empirical evidence of the impact of 

convexity on some capacity notions as well as on the short-run Johansen industry model. 

Throughout this analysis, we focus on non-parametric approaches.  

It should be stressed that as the first paper of its kind, we sketch an overview of the 

potential impact of convexity on capacity estimates in fisheries as well as on the plans resulting 

from the short-run Johansen industry model. Clearly, more detailed work is needed to explore 

the full set of implications.  

 

2. CRITICISMS OF THE CONVEXITY ASSUMPTION 

While the convexity assumption is often maintained in economics, one can find 

criticisms of the convexity assumption both in consumption and in production theory. Ignoring 

the issue of consumption, a critique of the convexity assumption in production theory can 

consider a variety of arguments.  

First, Hackman (2008, p. 39) interprets convexity of technology solely in terms of time 

divisibility of technologies and sees no other justification for its use (this is in line with 

Shephard (1970)).1 This time divisibility argument ignores lead times and the associated setup 

costs that make switching between the underlying activities costly. Thus, time divisibility is a 

questionable assumption that ideally needs empirical validation. Furthermore, even if time 

would be perfectly divisible, this does not imply that activities themselves are perfectly divisible. 

In other words, the question about time divisibility and divisibility of production factors are in 

principle independent of one another.  

                                                 
1 It can also be questioned to which extent the time divisibility assumption makes time enter into what essentially is a 
static production theory. In this interpretation, arguments related to time can only enter into a dynamic theory of 
production (see also Hackman (2008) for the latter). 
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Second, convexity is sometimes not considered as a primitive axiom, but it is implied by 

divisibility and additivity. Of course, then the plausibility of divisibility and additivity separately 

are at the heart of the debate. First, perfect divisibility of inputs and/or outputs is probably the 

most debatable assumption. Many if not most operations management problems in industry and 

distribution involve some forms of indivisibilities and input fixities. This typically results in 

complex integer and possibly non-linear optimization problems. More in general, all production 

processes seem to have some lower limit below which a process cannot possibly be scaled down 

realistically. Consequently, perfect divisibility is highly problematic (see Scarf (1994) or Winter 

(2008) for more detailed criticisms). Second, while additivity (defined as the possibility of 

summing two or more input-output bundles) is crucial to define free entry and is considered a 

plausible axiom in many textbooks, it is not beyond any criticism. For instance, Winter (2008) 

argues that it presupposes spatial separation and non-interaction, both of which are highly 

implausible. Since additivity relates to the aggregation of results of activities occurring in 

geographically distinct places, transportation costs must be small to be safely ignored under 

spatial separation. But, when activities are close to one another for transportation costs to be 

negligible (i.e., spatial separation is low), then the risk of production externalities looms when 

activities get “too close” to create interactions. Furthermore, location matters for quite some 

outputs (e.g., Italian and Californian lemons are considered different). Third, additivity and 

divisibility taken together do not only imply convexity, but constant returns to scale as well. The 

latter returns to scale assumption is in conflict with the existence of indivisibilities and the lower 

bounds on the scaling of almost all production processes (see supra and Scarf (1994) for a sharp 

critique).  

Summing up, convexity is widely known to be maintained for analytical convenience 

solely (e.g., Hackman (2008: p. 2)). But, ideally it may require testing in a production context, 

especially if key results would happen to depend on its validity. Observe that when convexity of 

technology is questionable, then also the particular assumption of convexity of either the input 

sets or the output sets is doubtful. 

 

3. TECHNOLOGY AND COST FUNCTION  

3.1. Technology: Definitions 

We start out by introducing some basic notation and by defining technology and the cost 

function. A production technology is characterised by the production possibility set: T = {(x,y)  x 

can produce y}. The input set associated with this technology T denotes all input vectors x  n
+ 



6 

 

that are capable of generating a given output vector y  m
+: L(y) = {x  (x,y)  T}. Often, it is 

useful to partition the input vector into a fixed and variable part (x = (xv,xf)) and to make the 

same distinction regarding the input price vector (w = (wv,wf)). 

The input set L(y) associated with T satisfies some combination of the following standard 

assumptions (e.g., Hackman (2008)): 

L1:  y ≥ 0 with y ≠ 0, 0  L(y) and L(0) = m
+. 

L2: Let {yn}n be a sequence such that limn→yn = , then ∩nL(yn) = 0. 

L3: L(y) is closed  y  m
+. 

L4:  x  L(y), u ≥ x  u  L(y). 

L5: L(y) is a convex set  y  m
+. 

L6: L(λ y) = λ L(y),  λ ≥ 0. 

Apart from the traditional regularity conditions (i.e., no free lunch and the possibility of inaction 

(L1), the boundedness (L2) and closedness (L3) of the input set, and strong (or free) disposal of 

inputs (L4)), there are two other assumptions that are sometimes invoked. Axiom (L5) imposes the 

traditional assumption convexity of the input set. Finally, axiom (L6) presents the special case of a 

homogenous or constant returns to scale (CRS) input correspondence contrasting with a more 

flexible variable returns to scale (VRS).  

We first define the input distance function that offers a complete characterization of 

technology. Indeed the input distance function characterizes the input set L(y) as follows:  

   .)(/,0:max, yLxyxDi    (1) 

Next, we define the radial input efficiency measure as: 

 .)()(0,min),( yLxyxDFi    (2) 

This measure is simply the inverse of the input distance function (   1),(),(  yxDyxDF ii ). Its 

most important properties are: (i) 0 < DFi(x,y)  1, with efficient production on the boundary 

(isoquant) of L(y) represented by unity; (ii) it has a cost interpretation (see Hackman (2008) for 

details).  

Alternatively, technology can also be represented by the output distance function defined 

over the output set. This formulation is particular useful in the primal approach to capacity. Let 

the output set associated with technology T denote all output vectors y  m
+ that can be 

obtained from a given input vector x  n
+: P(x) = {y  (x,y)  T}. Similar to (L1)-(L6), 

equivalent assumptions on the output set are available. The output distance function is defined as 

follows: 
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   .)(/,0:min, xPyyxDo    (3) 

We next define the radial output efficiency measure as its inverse: 

 .)()(0,max),( xPyyxDFo    (4) 

This radial output efficiency measure is – just like the input distance function - the inverse of the 

output distance function (   1
( , ) ( , )o oDF x y D x y

 ). Key properties are: (i) 1 < DFo(x,y), with 

efficient production on the boundary (isoquant) of P(x) represented by unity; (ii) it has a revenue 

interpretation (see Hackman (2008)).  

 

3.2. Cost Function: Definition and Impact Convexity 

The cost function is a dual representation of technology linked to the input distance 

function. The cost function defines the minimum expenditures to produce a given output vector 

y for a given vector of semi-positive input prices w  n
+:  

C(y,w) = min {wx  x  L(y)}.  (5) 

Briec et al (2004) prove an important property with regard to the impact of convexity on 

the cost function. Costs evaluated on non-convex technologies ( ( , )NCC y w ) are higher or equal 

to costs evaluated on convex technologies ( ( , )CC y w ):  

( , ) ( , ).NC CC y w C y w  (6) 

Only in case of CRS and a single output (see Briec et al. (2004): Proposition 4), both these cost 

functions are identical:  

   , ,C NCC y w C C y w C .  (7) 

This relation (6) simply reflects the property of the cost function stating that costs are non-

decreasing and convex (non-convex) in the outputs if and only if technology is convex (non-

convex) (see Jacobsen (1970): Proposition 5.2, or Shephard (1970: p. 227)). 

 

4. ECONOMIC AND TECHNICAL CAPACITY UTILISATION CONCEPTS2 

A variety of capacity notions exist in the literature. Specifically, it is customary to 

distinguish between technical (engineering) and economic (mainly cost) capacity concepts (see, 

e.g., Johansen (1968), Nelson (1989)). Limiting ourselves to capacity notions that can be 

                                                 
2 This section draws heavily on De Borger et al. (2012).  
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estimated using non-parametric specifications of technology or value functions, we first treat the 

economic concepts using a cost frontier approach, and then the technical or engineering notion.  

Note that following Squires (1987), Briec et al. (2010) show that it is possible to develop 

dual capacity measures for the profit maximisation case using non-parametric technologies. In the 

case of revenue maximisation several proposals are around: e.g., Segerson and Squires (1995), Färe, 

Grosskopf and Kirkley (2000), and Lindebo, Hoff and Vestergaard (2007), among others. 

However, it should be stressed that the eventual relations between this large variety of capacity 

concepts remain to be developed.  

It is tradition to distinguish between three basic ways of defining a cost-based notion of 

capacity (see Nelson (1989)). Each of these notions has the purpose to isolate the effect of 

excessive or inadequate utilisation of existing fixed inputs (e.g., capital stock) in the short-run.  

Advocated by Hickman (1964), among others, the first notion of potential or capacity 

output is defined in terms of the output produced at short-run minimum average total cost given 

existing plant and factor prices. It stresses the need to exploit the short-run technology and the 

shape of the average total cost function is determined by the law of diminishing returns.  

Following, e.g., Segerson and Squires (1990), the second definition corresponds to the 

output at which short and long run average total costs curves are tangent to one another. This 

corresponds to the intersection point of short and long run expansion paths. This gives this 

notion a particular theoretical appeal. Both notions presented so far coincide under CRS, since 

minimum of short and long run average total costs is tangent to one another. In fact, there are 

two variations of this tangency point notion depending on which variables one assumes to be 

decision variables. One notion assumes that outputs are constant and determines optimal 

variable and fixed inputs. Another notion assumes that fixed inputs cannot adjust, but outputs, 

output prices and fixed input prices do adjust.  

A third definition of economic capacity, advocated by Cassels (1937) and Klein (1960), 

among others, focuses on the output at the minimum of the long run average total costs. This 

notion has been little used, however, probably because it creates confusion with the notion of 

scale economies. 

We first characterise the above three economic capacity notions, one of which has two 

variants, in a multiple output context in the following definition.  

 

Definition 1: Reference points of economic capacity notions in the multiple output case are defined 

as the quantities and prices corresponding to: 
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1) Minimum of short-run total cost function C(y,wv,xfV): C(y,wv,xfC). 

2) Tangency cost with modified fixed inputs Ctang1(y,w,xf*V): Ctang1(y,w,xf*V) = C(y,wV) = 

C(y,wv,xf*V). 

3) Tangency cost with modified outputs Ctang2(y(p,wf,xf),w,xfV): Ctang2(y(p,wf,xf),w,xfV) = 

C(y(p,wf,xf),wV) = C(y(p,wf,xf),wv,xfV). 

4) Minimum of long run total cost function C(y,wV): C(y,wC), 

 

where xf* represents optimal fixed inputs; p is a vector of output prices (p  m
+); y(p,wf,xf) 

represents a vector of outputs that is adjusted for given output prices, fixed input prices, and the 

given fixed inputs; and C (V) is a shorthand for CRS (VRS).  

Obviously, this definition does not exhaust all proposals for economic capacity notions 

available in the literature. For instance, Coelli, Grifell-Tatjé and Perelman (2002) define an 

alternative ray economic capacity measure based on a short-run profit maximization model 

whereby the output mix is held constant. This notion is estimated using non-parametric frontiers. 

While this notion is not without appeal, it has so far been rarely applied. We also remark that a 

transposition in a cost function context is still missing and its position relative to the above more 

traditional capacity notions remains to be explored. 

Without going into technicalities, we briefly indicate how the four capacity notions of 

Definition 1 can be estimated using non-parametric frontier specifications. More details are 

available in the Appendix to De Borger et al. (2012). 

First, the minimum of the single output short-run average total cost function can be 

estimated in the multiple output case by solving for a variable cost function relative to a CRS 

technology (VC(y,wv,xfC)). Thereafter, one simply adds observed fixed costs (FC = wfxf) to 

obtain a short-run total cost function C(y,wv,xfC) (= VC(y,wv,xfC) + FC) as reference point for 

this first capacity notion. 

Second, a tangency notion of capacity aiming at finding a common point between short 

and long run costs can also be estimated using non-parametric cost frontiers. It is possible to 

distinguish two types of tangency notions depending on what one considers to be the decision 

variables. A first tangency cost notion keeps outputs constant and determines the corresponding 

optimal variable and fixed inputs (Ctang1(y,w,xf*V)). This notion can be indirectly solved by 

minimising a long run total cost function C(y,wV) yielding optimal fixed inputs (xf*). The 

short-run total cost function with fixed inputs equal to these optimal fixed inputs yields by 

definition exactly the same solution in terms of optimal costs and optimal variable inputs 
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(C(y,wv,xf*V) = VC(y,wv,xf*V) + *(y,w , ) v fFC x V ). Thus, the optimal solution for C(y,wV) 

generates this first tangency notion. 

A second tangency cost notion, favoured by Nelson (1989: 277) and analysed in detail in 

Briec et al. (2010), keeps fixed inputs constant and adjusts outputs, output prices (p  m
+) and 

fixed input prices such that the installed capacity is ex post utilised at a tangency cost level 

(Ctang2(y(p,wf,xf),w,xfV)). While outputs are normally assumed to be exogenous in a competitive 

cost minimisation model, this tangency notion aims to indicate the output quantities and prices 

as well as the fixed input prices at which existing fixed inputs are optimally utilised. This 

tangency cost level may imply an output level (y(p,wf,xf)) below or above the current outputs for 

a given observation. These tangency costs require for each observation the solution to a non-

linear system of inequalities (see Briec et al. (2010)). 

Third, the minimum of the run average total costs can be easily indirectly determined by 

solving for a long run total cost function relative to a CRS technology (C(y,wC)).  

Turning to a technical (engineering) capacity concept, Johansen (1968) pursued a 

technical approach focusing on a plant capacity notion.3 Plant capacity is defined as the maximal 

amount that can be produced per unit of time with existing plant and equipment without restrictions 

on the availability of variable inputs. Färe, Grosskopf and Kokkelenberg (1989) include this 

notion into a frontier framework using output efficiency measures (see also Färe, Grosskopf and 

Lovell (1994: § 10.3)). An output-oriented measure of plant capacity utilisation requires solving 

an output efficiency measure relative to both a standard technology and the same technology 

without restrictions on the availability of variable inputs. Plant capacity utilisation in the outputs 

(PCUo(x,xf,y)) is defined as: 

( , )
( , , )

( , )
f o

o f
o

DF x y
PCU x x y

DF x y
 , (10) 

where DFo(x,y) and DFo(x
f,y) are output efficiency measures relative to technologies including 

respectively excluding the variable inputs. Defining the technology excluding variable inputs, let 

the output set associated with technology S denote all output vectors y  m
+ that can be obtained 

from a given fixed input vector xf  n
+: P(xf) = {y  (xf,y)  S}. Now we can define 

 ( , ) max 1, ( ) ( )f f
oDF x y y P x     . Notice that PCUo(x,xf,y)  1, since 1  

DFo(x,y)  DFo(x
f,y). 

                                                 
3 Johansen (1968) also defines a synthetic capacity concept as the maximal output with existing plant and equipment 
as well as the currently available variable inputs. This amounts to a basic notion of technical efficiency.  
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It is important to make a remark on the impact of convexity on the plant capacity 

utilisation measure. First, note that the component efficiency measures can be signed as follows: 

1  ( , )NC
oDF x y   ( , )C

oDF x y  and 1  ( , )NC f
oDF x y   ( , )C f

oDF x y . In other words, output 

inefficiency is always lower or equal under non-convexity compared to convexity. Second, the 

plant capacity utilisation measure in the outputs (PCUo(x,xf,y)) under convexity versus non-

convexity cannot be signed, since it is a ratio of two efficiency measures.  

Two more remarks on this issue. First, while the effect of convexity on the cost capacity 

notions in Definition 1 are unambiguous, the effect on the cost based capacity utilisation notions 

remains to be explored. Second, do note that the second relation above (i.e., ( , )NC f
oDF x y   

( , )C f
oDF x y ) clearly reveals the impact of convexity when delivering capacity estimates that 

feed into the industry level models (see infra). 

Once a capacity utilisation notion has been selected, one faces the challenge to formulate 

a capacity utilisation measure. For single output technologies, a straightforward primal capacity 

utilisation measure is the ratio between actual output and the optimal output corresponding to 

the capacity notion. Alternatively, one can define dual capacity utilisation measure in terms of 

the costs due to the input fixity. For multi-output technologies, primal capacity utilisation 

measures are not straightforward (but Segerson and Squires (1990) have formulated some 

proposals), and dual measures are readily available.1 There is little agreement on how to define 

capacity utilisation measures: some define it as a ratio of observed to “optimal” costs, while 

others define it the reverse way (see, e.g., Segerson and Squires (1990)).  

Notice that for the purpose of the short-run Johansen industry model, it is not only 

necessary to compute the cost level corresponding to some capacity notion, but one also needs 

the corresponding optimal variable inputs, fixed or optimal fixed inputs as well as the optimal 

outputs.  

 

5.  INDUSTRY-LEVEL CAPACITY AND PLANNING MODELS 

Summing firm-level capacity outputs offers an estimate of the aggregate industry 

capacity output, hence a measure of overcapacity at the industry level. But, just summing firm-

level capacity levels precludes insight into the optimal restructuring and configuration of the 

industry. For example, the plant capacity measure implicitly assumes that production of capacity 

output is feasible and that the necessary variable inputs are available. However, the availability 

of variable inputs may be limited at the industry level.  
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In fisheries, overall production is limited by the productivity of the fish stock and among 

the relevant questions at the industry level are: 

 What is the optimal firm-structure given current aggregate outputs?  

 How can reallocation of inputs and outputs be organised between firms?  

 How does this reallocation changes if certain policy concerns are included?  

 What are the costs of pursuing these policy issues in terms of allocating more inputs than 

necessary? 

The focus of the short-run Johansen (1972) industry model is on reallocation of 

resources between production units in an industry by explicitly allowing improvements in 

technical efficiency and capacity utilization rates. Using a primal approach, the industry model 

is developed in two steps as follows: 

 

Step 1: From the firm level model DFo(x
f,y) an optimal activity vector z*k is provided for firm k 

and hence capacity output and its optimal use of fixed and variable inputs can be computed: 

 

* * * * * *

1 1 1

; ;
J J J

k k k
km j jm kf j jf kv j jv

j j j

y z y x z x x z x
  

    
 

 

Step 2: These “optimal” frontier estimates at the firm level are used as parameters in the 

industry model. In particular, the industry model can minimize the industry use of fixed inputs 

such that total production remains at the current total level (or at a desired target level) by 

reallocation of resources between firms. Define Ym as the industry output level of output m and 

Xf (Xv) as the aggregate fixed (variable) inputs available to the sector of factor f (v): 

 1 1 1

,  and
J J J

m jm f fj v vj
j j j

Y y X x X x
  

    
 

The formulation of the second step short-run Johansen (1972) industry model is: 
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The weight variables w now indicate which firms’ capacity is utilized and by how much. The 

components of the vector w are bounded above at unity, such that current capacities can never 

be exceeded.4 The first constraint prevents total production by a combination of firm capacities 

from falling below the current output levels. The second constraint means that the total use of 

fixed inputs on the right-hand side cannot be less than the use by a combination of firms. The 

third constraint calculates the resulting total use of variable inputs. Note that the total amount of 

variable inputs is a decision variable. The objective function is a radial input efficiency measure 

focusing on the aggregate use of fixed inputs solely. This input efficiency measure (θ) has a 

fixed-cost interpretation at the industry level. The activity vector w indicates which portions of 

the line segments representing the firm capacities are effectively used to produce outputs from 

given inputs. 

To sum up, the optimal solution to this short-run Johansen (1972) industry model gives 

the combination of firms or branches that can produce the same or more outputs with less or the 

same use of fixed inputs in aggregate. It measures the combined impact of the removal of any 

inefficiency, the exploitation of existing plant capacities, and the reallocation of inputs and 

outputs. The model specifies the optimal production plan of each active firm in the industry with 

the optimal use of variable and fixed inputs.5 Notice that an alternative formulation could be to 

have an output efficiency measure focusing on the expansion of industry outputs that has a 

revenue interpretation. But, this formulation is not that relevant for a resource constrained 

industry. 

This industry capacity model approach has been applied to several important fisheries, 

mainly in Europe.6 One application is reported by Kerstens, Vestergaard and Squires (2006) on 

the Danish fishing fleet. Different policy options were adopted (e.g., protecting certain vessels 

groups) and all results show there is substantial overcapacity. Lindebo (2005) offers the first 

transnational application of this model to the flatfish fishery in the North Sea. The analysis 

estimates that the same catch could be harvested with a fleet at 77% of its current size, and 

suggests an optimal reallocation of fixed inputs for each national fleet. Simulations of the impact 

of possible quota reductions and restrictions of equal capacity reduction across nations were also 

                                                 
4 In fact, this short-run industry model is geometrically speaking a set consisting of a finite sum of line segments 
known as a zonotope. 
5 The optimal use of fixed inputs is – in case of no slacks – the same as the current use by definition. The issue of slack 
is a major issue in DEA and will not be investigated further here. 
6 Apart from fishing industry, other application areas of this revised frontier-based short-run Johansen (1972) industry 
model known to us are hospitals (see Dervaux, Kerstens and Leleu (2000)) and a bank branch network (see Kerstens et 
al. (2010)). 
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considered. Tingley and Pascoe (2005) apply the model to the Scottish fleet and noted the 

economic benefits to the industry and employment impacts of achieving this capacity reduction 

and restructuring. Kerstens, Squires and Vestergaard (2005) develop the model using non-

convex technologies and observe that, compared with convex technologies, more units remain 

active in the optimal industry solution. Yagi and Managi (2011) apply the Kerstens, Vestergaard 

and Squires (2006) framework of policy measures to Japan. 

So far, the industry model has not been developed based on economic capacity notions. 

A straight forward application would be to generate in the first step the optimal frontier data 

based on the capacity cost approach and then in the second step minimizes the aggregate 

industry cost subject to the current production. As before the solution will specify a production 

plan that produces the same or more aggregate outputs at the same or lower overall industry cost. 

The resulting production plan will tell how outputs and inputs can be optimally reconfigured 

between the active firms. Another application could be to set up the model where overall costs 

are minimised in a reallocation problem, see Andersen and Bogetoft (2007) for a similar 

approach. Our a priori assessment is that the solution could mimic an Individual Transferable 

Quota system and the shadow values of the output constraints could provide information about 

the equilibrium quota prices.  

 

6. EMPIRICAL ILLUSTRATIONS 

 In this section we illustrate the implication of the assumptions convexity and non-

convexity on some test data sets using the primal approach as well as the cost-based approach. 

First, we explore the eventual differences between primal and cost-based approaches to capacity 

measurement using a sample of French fruit producers. This sample is mainly selected because 

it has input prices. Therefore, it allows illustrating the effect of convexity on some cost-based 

capacity notions as well as on the traditional plant capacity notion. Then, we apply the primal 

approach to annual survey cost data from the US Albacore industry.  

 

6.1. Some Capacity Estimates and Convexity: Preliminary Evidence 

As a preliminary empirical analysis, we apply three capacity notions to a small panel of 

three years of French fruit producers. The sample is based on annual accounting data collected 

in a survey (Ivaldi et al. (1996)). These fruit producers cultivate two outputs: (i) production of 

apples, and (ii) aggregate of alternative products. There is also price and quantity information 

for three inputs: (i) capital (including land), (ii) labour, and (iii) materials. While in total 184 
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farms are available, just 130, 135 and 140 farms have records in 1984, 1985 and 1986 

respectively. This yields a total of 405 observations in this unbalanced panel. 

Table 1 reports for three notions of capacity utilisation some basic descriptive statistics 

of the estimates resulting from a convex versus a non-convex estimation. In particular, we 

estimate the tangency cost with modified fixed inputs (i.e., Ctang1(y,w,xf*V)), the minimum of 

long run total cost function (i.e., C(y,wV)), and the output efficiency measure (i.e., DFo(x
f,y)). 

In particular, this table reports a 10% trimmed mean, as well as the 10th, 25th, 50th, 75th, and 90th 

percentiles.  

The descriptive statistics in Table 1 lead to the following conclusions. First, the 

distribution of some capacity estimates are quite dispersed, but more importantly the differences 

between the traditional convex and non-convex estimates are markedly. This is visually 

confirmed by Figures 1 to 3 displaying the kernel density estimate of the convex and the non-

convex distribution for these three capacity notions. Note that each figure uses a bandwidth 

common to the convex and non-convex distributions to facilitate comparison. Second, the 

differences between the densities of these convex and non-convex estimates can be tested with a 

test statistic proposed by Li (1996). This Li test statistic is also valid for dependent variables, 

whereby dependency is distinctive for frontier estimators. As the bottom line of Table 1 

indicates, the null hypothesis of the equality of both convex and non-convex estimates can be 

rejected for all three capacity notions.  

 

6.2. Plant Capacity Estimates and Short-Run Industry Model: Impact Convexity  

 In the annual survey data from the US Albacore industry there are 122 observations. The 

survey data is very detailed with numerous outputs and inputs. We have aggregated the data into 

two outputs, two variable inputs and two fixed inputs. The purpose is just to illustrate the 

potential use of the primal plant capacity approach. The outputs and inputs are: (i) catches of 

albacore and (ii) an aggregate output of other species; two variable inputs (labor and oil); and 

two fixed inputs (capital and other fixed cost).7 We compute both the plant capacity measures 

and the short-run industry model under convex and non-convex technologies. The technology 

for computing plant capacity assumes VRS. 

 In Table 2 the plant output efficiency measure is reported for different percentiles. Based 

on this example the estimates of plant capacity utilization rates are lower under convex than 

                                                 
7 For a detailed description of the dataset: see Squires and Vestergaard (2009). 
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under non-convexity technologies. At the median, the utilization rate is 1/1.17 under non-convex 

versus 1/1.95 under convex technologies.   

 The number of vessels operating at full capacity (i.e., being fully efficient for DFo(x
f,y)) 

is reported in the last row of Table 2. There are 31 efficient observations under convex 

technologies, while under non-convex technologies the number is 54. This implies an increase 

by nearly 75%. Since the fishery is fully developed with a mature fleet (Squires and Vestergaard 

2009) one would expect a relative high number of vessels operating at full plant capacity. This 

probably makes the non-convex results more credible in terms of their realism.  

 The optimal industry configuration under convex vs. non-convex capacity estimates are 

shown in Table 3. While the number of active vessels under convex technologies is 74 the 

number is increased to 80 vessels under non-convex technologies. This amounts to an increase 

of around 8%. 

These illustrative results show the impact of the assumption of convexity. The results 

also indicate that the assumption is critical and therefore needs to be justified. One could argue 

that the assumption of non-convexity is more appropriate because the approximation of the 

frontier is closer to the data and hence therefore does only use the available information 

provided by the data. 

 

7. CONCLUSIONS 

 We have raised questions concerning the assumption of convexity in the estimation of 

primal and dual capacity utilisation notions. Methodologically, it is possible to apply the primal 

approach under both convexity and non-convexity at the firm as well as at the industry level. 

This approach can obviously handle both the single output and the multiple output cases. Dual 

cost function approaches exist under both convexity and non-convexity (the latter have hitherto 

been totally ignored), and from an economic point of view these non-convex approaches have 

some advantages. Note that alternative dual capacity utilisation measures (revenue- or profit-

function-based) exist in the literature that have been largely ignored in this contribution.  

 In the current paper, we have tried to provide some preliminary tests on the impact of 

convexity from an empirical point of view. In general, the assumption of non-convexity seems 

to give more “conservative” results implying less overcapacity at both firm and industry level.  

 We note the following limitations of this preliminary study. First, not all capacity 

notions have been empirically assessed in terms of the impact of convexity. Some alternative 

cost-based capacity utilisation measures remain to be tested for the effect of convexity. 
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Furthermore, the repercussions of convexity for most of these capacity measures except the 

plant capacity measures have not yet been developed at the industry level. Therefore, the 

assumption of non-convexity needs definitely to be further explored at the industry level.  
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Table 1: Convex vs. Non-convex Estimates for Three Capacity Notions 

 

Descriptive 

statistics Opt. Cost CRS 

Tangency cost with 

modified fixed inputs PCU 

  Convex Non-Convex Convex Non-Convex Convex Non-Convex 

Trimmed 

mean† 302046.0 430273.8 406443.6 646937.8 22.27 16.41

10th Percentile 59639.3 90648.5 171701.0 211163.7 2.48 1.97

25th Percentile 104092.9 159629.8 225669.2 310735.6 4.47 3.39

50th Percentile 201810.8 311058.8 302346.4 494061.9 9.94 6.98

75th Percentile 428748.3 655480.3 510322.6 845695.3 23.49 17.88

90th Percentile 834635.9 1127155.8 886693.0 1681899.8 95.77 75.02

Li – test Ho rejected Ho rejected Ho rejected 
† 10% trimming level. 
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Table 2: Plant Output Efficiency Estimates DFo(x
f,y) 

 

 Output efficiency estimate DFo(x
f,y) 

 Convexity Non-Convexity 

10th Percentile 1.00 1.00 

25th Percentile 1.12 1.00 

50th Percentile 1.95 1.17 

75th Percentile 3.49 1.96 

90th Percentile 5.58 4.10 

# Efficient observations 31 54 

 



23 

 

Table 3: Optimal Industry Configuration using the Short Run Johansen Industry Model 

 

Status of Vessel Number of Vessels 

 Convexity Non-Convexity 

Active 74 80 

Partly active 3 3 

Not active 45 39 
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Figure 1: Density of Convex vs. Non-convex Cost under CRS 
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Figure 2: Density of Convex vs. Non-convex Tangency Cost with Modified Fixed Inputs 
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Figure 3: Density of Convex vs. Non-convex Output Efficiency Measure without Limits on 

Variable Inputs 
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Econometric Estimates of Productivity and
Efficiency Change in the Australian Northern

Prawn Fishery1

C. J. O’Donnell

Abstract

Bayesian methods are used to compute and decompose Färe-Primont indexes of total

factor productivity (TFP) change in the Australian Northern Prawn Fishery (NPF). Färe-

Primont indexes are used because i) they satisfy all basic axioms from index number

theory, ii) they can be exhaustively decomposed into measures of environmental change

and efficiency change (i.e., there are no residual ‘effects’), and iii) they can be computed

using only quantity data (i.e., no prices are needed). Bayesian estimation methodology

is used because i) it can solve an endogeneity problem that arises in the econometric es-

timation of multiple-input multiple-output distance functions, ii) it can be used to draw

valid finite-sample inferences concerning nonlinear functions of the model parameters

(e.g., measures of technical efficiency), and iii) non-sample information (e.g., informa-

tion provided by economic theory) can be easily incorporated into the estimation process.

Results for the NPF for the period 1974–2010 are summarised in terms of characteristics

of estimated posterior pdfs for measures of TFP change, environmental change, technical

efficiency change, and scale efficiency change.

Key words: Total Factor Productivity; Färe-Primont Index; Technical Efficiency; Mix

Efficiency; Scale Efficiency; Output Distance Function; Markov Chain Monte Carlo.
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1. Introduction

The Australian Northern Prawn Fishery (NPF) is a multi-species fishery covering an area of

771,000 square kilometres off Australia’s northern coast. Banana prawns and tiger prawns

account for approximately 80% of the landed catch. The total catch of all prawn species

peaked at more than 13,800 tonnes in 1974. Since that time, input controls (e.g., spatial

closures, gear controls, restrictions on entry and vessel replacement) and changes in envi-

ronmental conditions have seen the total catch fall by more than 45%. The main aim of this

paper is to estimate associated changes in total factor productivity (TFP). A second aim is

to decompose these changes into measures of environmental (or “technical”) change, tech-

nical efficiency change, and scale efficiency change. Early empirical studies of the NPF

were only concerned with estimating technical efficiency change [e.g., Kompas, Che, and

Grafton (2004)]. Only relatively recently have NPF researchers and policy-makers recog-

nised the importance of also measuring TFP change and other types of efficiency change

[e.g., Pascoe et al. (2012)].

Several index formulas are available for measuring TFP change. Irrespective of the in-

dex formula chosen, decomposing TFP change into measures of environmental change and

efficiency change involves estimating a functional representation of the production technol-

ogy. Alternative functional representations of multiple-input multiple-output technologies

include cost, revenue, profit and distance functions. If no price data are available (as in this

paper) then the least restrictive representation is a distance function. This paper represents

the NPF production technology using the output and input distance functions of Shephard

(1970).

Distance functions are typically estimated using one of two estimation methodologies:

stochastic frontier analysis (SFA) or data envelopment analysis (DEA). Environmental vari-

ables can be incorporated into SFA analyses by simply treating them like any other ex-

ogenous variables. Incorporating environmental variables into DEA analyses is slightly
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more complicated. To estimate distance functions (equivalently, measures of technical ef-

ficiency) using DEA and at the same time allow for changes in the production environment

it is necessary to use non-overlapping subsets of observations (i.e., observations peculiar

to different production environments) to estimate separate frontiers. If the production en-

vironment changes over time and only time-series data are available (as in this paper) then

this approach is infeasible.2 Thus, this paper estimates the production technology using

SFA methodology.

In O’Donnell (2012) I identify a class of TFP indexes that can be exhaustively de-

composed into various measures of environmental change and efficiency change. Indexes

that can be decomposed in this way include Laspeyres, Paasche, Fisher, Törnqvist, Lowe,

Hicks-Moorsteen and Färe-Primont TFP indexes. If no price data are available (as in this

paper) then the price-based Laspeyres, Paasche, Fisher, Törnqvist and Lowe indexes are

unavailable. Of the two remaining indexes, the Hicks-Moorsteen index is unsuitable be-

cause it is intransitive. Transitivity means that a direct comparison of two observations will

yield the same measure of TFP change as an indirect comparison through a third obser-

vation. For example, if TFP increases by 10% between 2000 and 2001, and by another

10% between 2001 and 2002, then the index that directly compares TFP in 2000 and 2002

should indicate that TFP has increased by 21%. The Hicks-Moorsteen TFP index does not

generally satisfy this common sense property. This paper uses the Färe-Primont index to

measure TFP change because, unlike the Hicks-Moorsteen index, it is transitive.

Within an SFA framework, different econometric estimators are available for estimating

(and decomposing) Färe-Primont measures of TFP change. Possible sampling theory esti-

mators include the maximum likelihood (ML) and generalised method of moments (GMM)

estimators. These estimators are popular because they have good asymptotic properties

(e.g., consistency, asymptotic normality). However, their finite sample properties are gen-

erally unknown. Thus, if sample sizes are small (as in this paper), an alternative estimation

methodology is generally required. This paper uses a Bayesian estimation approach osten-
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sibly because valid inferences can still be made when sample sizes are small. The Bayesian

approach can also be used to overcome an endogeneity problem that arises in the econo-

metric estimation of multiple-input multiple-output distance functions [O’Donnell (2011)].

The structure of the paper is as follows. Section 2 uses Shephard (1970) output and

input distance functions to represent a Hicks neutral and homothetic production technol-

ogy. Section 3 describes a class of output and input quantity indexes that satisfy a number

of common sense properties, including transitivity. Ratios of these so-called “proper” in-

dexes can be used to measure TFP change. Section 4 describes one such TFP index—the

Färe-Primont index. Section 5 explains how the Färe-Primont TFP index can be exhaus-

tively decomposed into a measure of environmental change and output-oriented measures

of technical and scale efficiency change. The decomposition methodology doesn’t require

any restrictive assumptions concerning the production technology or market structure—

this makes it suitable for use in regulated industries (e.g., the NPF). Section 6 develops the

econometric model. Section 7 explains how a Bayesian methodology developed by Fer-

nandez, Koop, and Steel (2000) can be used to estimate the unknown model parameters

and associated inefficiency effects. Section 8 describes the NPF data used in the empirical

work. Section 9 discusses point and interval estimates of the parameters of the distance

function and different components of TFP change. The paper is concluded in Section 10.

2. The Production Technology

A common and very general representation of a production technology is the production

possibilities set:

(1) T (z) = {(x,q) : x can produce q in environment z}

where x = (x1, . . . ,xM)′ ∈RM
+ is a nonnegative vector of inputs, q = (q1, . . . ,qN)

′ ∈RN
+ is a

nonnegative vector of outputs, and z = (z1, . . . ,zJ)
′ ∈RJ

++ is a positive vector of exogenous
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variables measuring characteristics of the production environment. In this paper I maintain

the basic regularity properties of Färe and Primont (1995, pp., 26, 27):

T1: (x,0) ∈ T (z) for all x ∈ RM
+ (inactivity);

T2: P(x,z) = {q : (x,q) ∈ T (z)} is bounded for all x ∈ RM
+ (boundedness);

T3: q≥ 0⇒ (0,q) /∈ T (z) (weak essentiality);

T4: (x,q) ∈ T (z) and 0≤ λ ≤ 1⇒ (x,λq) ∈ T (z) (weak disposability of outputs);

T5: (x,q) ∈ T (z) and λ ≥ 1⇒ (λx,q) ∈ T (z) (weak disposability of inputs); and

T6: P(x,z) = {q : (x,q) ∈ T (z)} is closed for all x ∈RM
+ and L(q,z) = {x : (x,q) ∈ T (z)}

is closed for all q ∈ RN
+ (output and input closedness).

Assumption T1 (inactivity) says it is possible to do nothing. T2 (boundedness) says there

are limits to what can be produced using a finite amount of inputs. T3 (weak essentiality)

says positive outputs cannot be produced without a positive amount of at least one input. T4

(weak disposability of outputs) says that if an input vector can produce a particular output

vector then it can also be used to produce a scalar contraction of that output vector (i.e.,

fewer outputs in the same mix). T5 (weak disposability of inputs) says that if an output

vector can be produced using a particular input vector then it can also be produced using

a scalar magnification of that input vector (i.e., more inputs in the same mix). Finally,

T6 (output and input closedness) is a mathematical property that guarantees the existence

of the input distance function of Shephard (1970, pp. 206): DI(x,q,z) = sup{ρ > 0 :

(x/ρ,q) ∈ T (z)}. This function gives the maximum factor by which a firm can radially

contract its input vector and still produce the same output vector. If it exists then it is

nonnegative (NN) and linearly homogeneous (HD1) in inputs. Assumptions T2 and T6

together guarantee the existence of the Shephard (1970, pp. 207) output distance function:

DO(x,q,z)= inf{δ > 0 : (x,q/δ )∈ T (z)}. The output distance function gives the reciprocal
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of the largest factor by which a firm can radially expand its output vector while holding its

input vector fixed. If it exists then it is NN and HD1 in outputs.

In this paper, a technology is said to be regular if T1–T6 hold. If a technology is regular

then the output and input distance functions exist. However, if they are to be used to

construct meaningful TFP indexes then the following stronger versions of T4 and T5 are

required:

T4s: (x,q) ∈ T (z) and 0≤ q1 ≤ q⇒ (x,q1) ∈ T (z) (strong disposability of outputs); and

T5s: (x,q) ∈ T (z) and x1 ≥ x⇒ (x1,q) ∈ T (z) (strong disposability of inputs).

Assumption T4s (strong disposability of outputs) says that it is possible to use the same

inputs to produce fewer outputs. If T4s holds then the output distance function is nonde-

creasing (ND) in outputs. T5s (strong disposability of inputs) says it is possible to produce

the same outputs using more inputs. If T5s holds then the input distance function is ND in

inputs. Strong disposability implies weak disposability (i.e., T4s⇒T4 and T5s⇒T5).

Assumptions T1–T6, T4s and T5s are enough to construct a meaningful TFP index and

decompose it into a measure of environmental change and various measures of efficiency

change (details are provided in Section 4). However, for a particularly simple decomposi-

tion, in this paper I also assume

HDr: (x,q) ∈ T (z)⇔ (λx,λ rq) ∈ T (z) for all λ > 0 (homogeneity of degree r),

EOH: DO(x,q,z) = g(µx)DO(µx,q,z)/g(x) (extended output homotheticity),

EIH: DI(x,q,z) = h(µq)DI(x,µq,z)/h(q) (extended input homotheticity),

EHON: DO(x,q,z) = b(µz)DO(x,q,µz)/b(z) (extended Hicks output neutrality) and

EHIN: DI(x,q,z) = a(z)DI(x,q,µz)/a(µz) (extended Hicks input neutrality)

where h(.), g(.), b(.) and a(.) are scalar-valued functions with properties that are consis-

tent with the properties of the respective distance functions [e.g., T4s means h(.) must be
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nondecreasing]. The HDr property says that a one percent increase in inputs provides for

an r percent increase in outputs. The technology is said to exhibit decreasing returns to

scale (DRS), constant returns to scale (CRS) or increasing returns to scale (IRS) as r is

less than, equal to, or greater than one. The homotheticity and Hicks neutrality proper-

ties have important implications for marginal rates of technical transformation (MRTTs)

and marginal rates of technical substitution (MRTSs): if a regular technology is EOH then

MRTSs are independent of output quantities and environmental variables; if the technology

is EIH then MRTTs are independent of input quantities and environmental variables; and

if the technology is either EHON or EHIN then both MRTSs and MRTTs are independent

of environmental variables. In this paper, a regular technology is said to be extended ho-

mothetic (EH) if and only if it is both EOH and EIH. It is also said to be extended Hicks

neutral (EHN) if and only if it is both EHON and EHIN. In the single output case, a reg-

ular production technology is EHN if and only if the production function can be written

F(x,z) = b(z)F̄(x) where F̄(x) = 1/DO(x,b(µz),µz) (Appendix, Propositions D1 and D2).

This corresponds to the definition of EHN in Blackorby, Lovell, and Thursby (1976, p.

848, Lemma 3).

If a regular technology is EH, EHN and HDr (as assumed in this paper) then and only

then the output and input distance functions take the form (Appendix, Propositions D8 and

D9):

(2) DO(x,q,z) ∝ h(q)r/[b(z)g(x)]
and

(3) DI(x,q,z) ∝
[
b(z)g(x)

]1/r
/h(q)

where h(.) is NN, ND and homogeneous of degree 1/r and g(.) is NN, ND and HDr.
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3. Proper Output and Input Quantity Indexes

It is convenient at this point to introduce a time subscript t into the notation so that, for

example, xt = (x1t , . . . ,xMt)
′ and qt = (q1t , . . . ,qNt)

′ represent the input and output quantity

vectors in period t. An index that compares qt with qs using the latter as the reference (or

base) vector is any variable of the form [O’Donnell (2012)]

(4) QIst ≡
Q(qt)

Q(qs)

where Q(.) is an NN, ND and HD1 scalar aggregator function. If Q(.) is differentiable then

Q(qt) = ∑n antqnt where ant ≡ ∂Q(qt)/∂qnt ≥ 0. It follows that the index (4) can be written

(5) QIst =
∑n antqnt

∑n ansqns
≡ QI(qs,qt ,as,at)

where at = (a1t , . . . ,aNt)
′ = 0 can be interpreted as a vector of weights measuring the rel-

ative importance of different outputs to the decision maker. Moreover, it is easily shown

that:3

Q1: qr ≥ qt ⇒ QIsr ≥ Qst and qr ≥ qs⇒ QIrt ≤ Qst (weak monotonicity);

Q2: QI(qs,λqt ,as,at) = λQI(qs,qt ,as,at) for λ > 0 (linear homogeneity);

Q3: QI(qt ,qt ,at ,at) = Qtt = 1 (identity);

Q4: QI(λqs,λqt ,as,at) = QI(qs,qt ,as,at) for λ > 0 (homogeneity of degree 0);

Q5: QI(Λqs,Λqt ,Λ
−1as,Λ

−1at) = QI(qs,qt ,as,at) where Λ is a diagonal matrix with di-

agonal elements strictly greater than zero (commensurability);

Q6: QI(qs,λqs,as,as) = λ for λ > 0 (proportionality); and

Q7: QIst = QIsrQIrt (transitivity).

Property Q1 (weak monotonicity) says that the index will not decrease with i) an increase

in any element of the comparison vector and/or ii) a decrease in any element of the base
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vector. Q2 (linear homogeneity) says that a proportionate increase in the comparison vector

will translate into the same proportionate increase in the index. Q3 (identity) says that

if the comparison and base vectors are identical then the index takes the value one. Q4

(homogeneity of degree zero) says that if the comparison and base vectors are multiplied

by the same constant then the index doesn’t change. Q5 (commensurability) says that the

index is robust to changes in units of measurement (i.e., the index doesn’t change if, for

example, a variable is measured in tonnes instead of kilograms). Q6 (proportionality) says

that if all variables change λ -fold then the index that measures this change is equal to

λ . Q7 (transitivity) says that the index that directly compares two observations is equal

to the index obtained when the comparison is made indirectly via a third observation. In

this paper, an output quantity index is said to be proper if and only if it satisfies Q1–Q7. If

there are only two observations in the dataset then the transitivity property Q7 is redundant.

Thus, an output quantity index for binary comparisons (i.e., a comparison involving only

two observations) is proper if and only if it satisfies Q1–Q6.

Input quantity indexes have a similar structure. Specifically, an index that compares xt

with xs using the latter as the base is any variable of the form [O’Donnell (2012)]

(6) XIst ≡
X(xt)

X(xs)

where X(.) is an NN, ND and HD1 scalar aggregator function. If X(.) is differentiable then

(7) XIst =
∑m bmtxmt

∑m bmsxms
≡ XI(xs,xt ,bs,bt)

where bmt ≡ ∂X(xt)/∂xnt ≥ 0 and bt = (b1t , . . . ,bNt)
′ = 0. This index has properties that

are analogous to those of the output index:

X1: xr ≥ xt ⇒ XIsr ≥ Xst and xr ≥ xs⇒ XIrt ≤ Xst (weak monotonicity);

X2: XI(xs,λxt ,bs,bt) = λXI(xs,xt ,bs,bt) for λ > 0 (linear homogeneity);

X3: XI(xt ,xt ,bt ,bt) = Xtt = 1 (identity);
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X4: XI(λxs,λxt ,bs,bt) = XI(xs,xt ,bs,bt) for λ > 0 (homogeneity of degree 0);

X5: XI(Λxs,Λxt ,Λ
−1bs,Λ

−1bt) = XI(xs,xt ,bs,bt) where Λ is a diagonal matrix with di-

agonal elements strictly greater than zero (commensurability);

X6: XI(xs,λxs,bs,bs) = λ for λ > 0 (proportionality); and

X7: XIst = XIsrXIrt (transitivity).

Again, an input quantity index for multiple comparisons is said to be proper if and only if

it satisfies X1–X7. An input quantity index for binary comparisons is proper if and only if

it satisfies X1–X6.

4. TFP Indexes

In O’Donnell (2012) I define the TFP of the firm to be T FPt = Qt/Xt where Qt ≡ Q(qt)

and Xt ≡ X(xt). It follows that the index that compares TFP in period t with TFP in period

s is

(8) T FPIst =
T FPt

T FPs
=

Qt/Xt

Qs/Xs
=

Qt/Qs

Xt/Xs
=

QIst

XIst

where QIst and XIst are the proper output and input quantity indexes defined in Section 3.

In this paper, a TFP index is said to be proper if and only if it can be written as the ratio of

a proper output index to a proper input index.

Any NN, ND and HD1 function can be used as an aggregator function for purposes of

constructing proper output, input and TFP indexes. If T1–T6, T4s and T5s hold then the

output (input) distance function is NN, ND and HD1 in outputs (inputs). Thus, suitable

output and input aggregator functions are Q(qt) ∝ DO(µx,qt ,µz) and X(xt) ∝ DI(xt ,µq,µz)

where µx ∈ RM
+ , µq ∈ RN

+ and µz ∈ RJ
++ are arbitrary. The associated output, input and

TFP indexes are

(9) QIst =
DO(µx,qt ,µz)

DO(µx,qs,µz)
,
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(10) XIst =
DI(xt ,µq,µz)

DO(xs,µq,µz)

and

(11) T FPIst =
DO(µx,qt ,µz)

DO(µx,qs,µz)

DI(xs,µq,µz)

DO(xt ,µq,µz)
.

In this paper I refer to the TFP index (11) as a Färe-Primont index because the component

indexes (9) and (10) can be traced back at least as far as Färe and Primont (1995, pp.

36, 38). In practice, evaluating Färe-Primont indexes usually involves choosing vectors

µx, µq and µz that are relevant to all the observations that are being compared (e.g., if

comparisons are being made between all the observations in a dataset then any measure

of central tendency would be suitable). However, different assumptions concerning the

production technology can sometimes obviate the need to identify vectors µx, µq and µz

that are “relevant”. For example, if the technology is EH, EHN and HDr then the output

and input distance functions are given by (2) and (3) and the TFP index (11) takes the form

(12) T FPIst =
h(qt)

r

h(qs)r
g(xs)

1/r

g(xt)1/r
.

Observe that this index does not depend on µx, µq or µz.

5. The Components of TFP Change

In O’Donnell (2010, 2012) I explain how TFP indexes that take the form (8) can be de-

composed into a measure of technical (or environmental) change and various measures of

efficiency change. A distinctive feature of the methodology is the way in which measures

of efficiency are expressed in terms of aggregate quantities. For example, for a firm operat-

ing in a production environment characterised by zt , measures of technical, mix and scale

efficiency include

OT Et =
Qt

Q̄t
= DO(xt ,qt ,zt)(13)

OMEt =
Q̄t

Q̂t
(14)
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OSEt =
Q̄t/Xt

Q̃t/X̃t
and(15)

OSMEt =
Q̄t/Xt

T FP∗t
(16)

where Q̄t ≡ QtDO(xt ,qt ,zt)
−1 is the maximum aggregate output possible when using xt to

produce a scalar multiple of qt , Q̂t is the maximum aggregate output possible when using

xt to produce any output vector, Q̃t and X̃t are the aggregate output and input obtained

when TFP is maximized subject to the constraint that the output and input vectors are

scalar multiples of qt and xt respectively, and T FP∗t is the maximum TFP possible (in an

environment characterised by zt). Output-oriented technical efficiency (OTE) is a measure

of the increase in TFP that can be obtained when holding the input vector and the output

mix fixed. Output-oriented mix efficiency (OME) is a measure of the increase in TFP that

can be obtained through economies of scope. Output-oriented scale efficiency (OSE) is

a measure of the increase in TFP possible through economies of scale. Finally, output-

oriented scale-mix efficiency (OSME) is a combined measure of the increase in TFP that

can be achieved through economies of both scale and scope. More details concerning these

and related measures of efficiency can be found in O’Donnell (2010, 2012).

Equations (13)–(16) can be used to decompose the TFP index (8) into several

economically-meaningful components. For example, using (13) and (16):

(17) T FPIst =

(
T FP∗t
T FP∗s

)(
OT Et

OT Es

)(
OSMEt

OSMEs

)
.

The term T FP∗t /T FP∗s compares the maximum TFP possible in an environment charac-

terised by zt with the maximum TFP possible in an environment characterised by zs. This is

a natural measure of environmental change. The remaining components in (17) are output-

oriented measures of technical efficiency change and scale-mix efficiency change. Thus,

equation (17) reveals that TFP change is driven by three intrinsically different components:

an environmental change component that measures movements in the production frontier; a

technical efficiency change component that measures movements towards or away from the
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frontier; and a scale-mix efficiency change component that measures movements around

the frontier to capture economies of scale and scope.

Different aggregator functions and different assumptions concerning the production tech-

nology typically give rise to different measures of (the components of) TFP change. For

example, if the aggregator functions are Q(qt) ∝ DO(µx,qt ,µz) and X(xt) ∝ DI(xt ,µq,µz)

and if the technology is EH, EHN and HDr then the TFP index is given by (12). In this

case the decomposition (17) takes the specific form

T FPIst =

(
b(zt)

b(zs)

)(
h(qt)

r

b(zt)g(xt)

b(zs)g(xs)

h(qs)r

)(
g(xs)

g(xt)

)(1−r)/r

.(18)

The first component is still a measure of environmental change, the second component

is still a measure of output-oriented technical efficiency change, but the last component

is in fact a measure of pure scale efficiency change. There is no mix efficiency change

component in this decomposition because the output and input aggregator functions are

proportional to the output and input distance functions (O’Donnell 2012, Section 3.7). If

the technology exhibits CRS then r = 1 and the last component vanishes.

6. The Econometric Model

To derive an econometric model it is convenient to first define

vdt ≡ r lnh(qt)− lnb(zt)− lng(xt)− lnDO(xt ,qt ,zt)(19)

vxt ≡ lng(xt)−
M

∑
m=1

βm lnxmt(20)

vzt ≡ lnb(zt)−
J

∑
j=1

γ j lnz jt− γ0 and(21)

vqt ≡ ln

(
N

∑
n=1

αnqnt

)
− r lnh(qt)(22)

where αn ≥ 0, ∑n αn = 1, βm ≥ 0 and ∑m βm = r. The variable vdt can be viewed as a

specification error that vanishes if the technology is EH, EHN and HDr. Similarly, the
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variables vxt , vzt and vqt can be viewed as errors that vanish if the associated functions

g(.), b(.) and h(.) are in fact Cobb-Douglas and linear. If the error terms vanish then the

inequality constraints αn ≥ 0 and βm ≥ 0 are needed to ensure that the technology satisfies

T1–T6. Other inequality constraints may be appropriate in some empirical contexts. For

example, all other things being equal, if the j-th environmental variable has a nonnegative

effect on output then γ j ≥ 0.

Equations (19)–(22) are definitions, not assumptions. Thus, without making any assump-

tions concerning firm optimising behaviour or the functional form of the output distance

function, it is possible to write

(23) lnQt = γ0 +
J

∑
j=1

γ j lnz jt +
M

∑
m=1

βm lnxmt + vt−ut

where Qt ≡ ∑n αnqnt can be viewed as an aggregate output, vt ≡ vdt + vzt + vxt + vqt rep-

resents approximation errors but may also subsume other sources of statistical noise (e.g.,

measurement errors), and ut ≡ − lnDO(xt ,qt ,zt) ≥ 0 is an output-oriented technical inef-

ficiency effect. Equation (23) is in the form of the stochastic frontier model of Aigner,

Lovell, and Schmidt (1977). The full set of T observations in the dataset can be written

(24) y = Xβ + v−u

where y = (y1, . . . ,yT )
′ and yt ≡ lnQt . The remaining definitions are obvious, although it

is worth noting that X is T × (J+M+1).

To estimate the unknown parameters is it necessary to make some assumptions concern-

ing the error terms. In this paper I follow Aigner, Lovell, and Schmidt (1977, pp. 24, 29)

and assume the idiosyncratic errors (vt) and the inefficiency errors (ut) are independent and

identically distributed (iid) normal and exponential random variables respectively. Under

these assumptions, ML estimation would be straightforward if it were not for the fact that

if N ≥ 2 the dependent variable is unobserved. In this paper I solve the problem using the

Bayesian methodology of Fernandez, Koop, and Steel (2000). This involves sampling from
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the joint posterior probability density function (pdf) of the unknown parameters and unob-

served inefficiency effects. The next section describes the conditional likelihood function,

prior pdf, and conditional posterior pdfs needed to implement the sampling algorithm.

7. Bayesian Estimation

If the idiosyncratic errors are iid normally distributed with mean zero and precision h then

the conditional joint density for the unobserved dependent variable vector is4

(25) p(y|β ,u,h) = fN(y|Xβ −u,h−1IT )

where IT denotes an identity matrix of order T . Unfortunately, this T -variate density is

not enough to define a sampling density for the N × T matrix of observed outputs Q =

(q1, . . . ,qT ). To overcome this problem I follow Fernandez, Koop, and Steel (2000) and

introduce N − 1 new random variables into the model to generate stochastics in another

N−1 dimensions. Specifically, I introduce the unobserved shadow revenue shares

(26) r∗nt =
∂ lnDO(xt ,qt ,zt)

∂ lnqnt
=

αnqnt

∑
N
k=1 αkqkt

for n = 1, . . . ,N. These unobserved shares sum to one and so it is natural to assume r∗t =

(r∗1t , . . . ,r
∗
Nt)
′ is iid with a Dirichlet pdf:5 p(r∗t |s) = fD(r∗t |s) where s = (s1, . . . ,sN)

′ ∈ℜN
+.

Given α = (α1, . . . ,αN)
′ there is a one-to-one mapping between the observed output vec-

tor qt ∈ ℜN
+ and the unobserved vector (yt ,r∗2t , . . . ,r

∗
Nt)
′. Thus, the conditional likelihood

function for the matrix of observed outputs Q = (q1, . . . ,qT ) is (Fernandez, Koop, and Steel

2000, p. 55, eq. 2.7):

(27) p(Q|α,β ,h,s,u) = fN(y|Xβ −u,h−1IT )
T

∏
t=1

fD(r∗t |s)
T

∏
t=1
|Jt |

where |Jt | = ∏n(r∗nt/qnt) is the absolute value of the Jacobian of the transformation from

(yt ,r∗2t , . . . ,r
∗
Nt)
′ to qt . I also follow Fernandez, Koop, and Steel (2000) and specify a prior

pdf of the form p(α,β ,h,s,u) = p(α)p(β )p(h)p(s)p(u) where each of the component
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priors is proper:6

(28) p(α) = fD(α|ιN)

(29) p(β ) = fN(β |0K,k2IK)I(β ∈ R)

(30) p(h) = fG(h|1,k1)

(31) p(s) =
N

∏
n=1

fG(sn|1,k3)

(32) p(u|λ ) =
T

∏
t=1

fG(ut |1,λ ) and

(33) p(λ ) = fG(λ |1,− ln(τ))

where I(.) is an indicator function that takes the value one if the argument is true and zero

otherwise, 0M is a M× 1 zero vector, ιN is an N × 1 unit vector, R is the region of the

parameters space where constraints of the type discussed at the beginning of Section 5 are

satisfied, and K = J+M+1. For the empirical work in this paper I set k1 = 10−4, k2 = 104

and k3 = 10−2 to ensure the priors for β , h and s are relatively noninformative. The pdf (33)

is centred on − ln(τ) where τ = 0.9 (a prior estimate of the average level of efficiency).

The prior pdf combines with the conditional likelihood function (27) to yield a joint pos-

terior pdf for the unknown parameters and the unobserved inefficiency effects. Character-

istics of marginal posterior pdfs (e.g., means and variances) are obtained by integrating this

joint posterior. Unfortunately, analytical integration is impossible. In this paper, integration

is conducted using a Markov Chain Monte Carlo (MCMC) sampling algorithm—the Gibbs

sampler. The Gibbs sampler involves partitioning the vector of unknown parameters and

inefficiency effects into blocks, then simulating from the conditional posterior pdf for each

block. For details on the Gibbs sampler see Casella and George (1992) and Koop (2003).
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In this paper, the conditional posterior pdfs needed to make the Gibbs sampler operational

are:

(34) p(h|α,β ,s,λ ,u,Q) ∝ fG(h|1+0.5T,k1 +0.5e′e)

(35) p(λ |α,β ,h,s,u,Q) ∝ fG(λ |T +1,u′ιT − ln(τ))

(36) p(β |α,h,s,λ ,u,Q) ∝ fN(β |hV X ′(y+u),V )I(β ∈ R)

(37) p(u|α,β ,h,s,λ ,Q) ∝ fN(u|Xβ − y−h−1
λ
−1

ιT ,h−1IT )I(u≥ 0T )

p(sn|α,β ,h,s−n,λ ,u,Q)(38)

∝ Γ

(
N

∑
k=1

sk

)T

Γ(sn)
−T exp

(
− sn

[
k1−

T

∑
t=1

lnr∗nt

])
I(sn ≥ 0)

and

p(α|β ,h,s,λ ,u,Q)(39)

∝

N

∏
n=1

α
snθT
n

T

∏
t=1

(
N

∑
n=1

αnqnt

)−∑
N
n=1 sn

exp(−0.5h−1e′e)I(α ∈ R)

where e ≡ y−Xβ + u; V ≡ (hX ′X + k−1
2 IK)

−1; and s−n is the vector comprising all the

elements of s except sn. Simulating from (34) and (35) is straightforward using built-in

functions in common computer packages. Simulating from the remaining pdfs is slightly

more complicated. In this paper, a Metropolis-Hastings (MH) algorithm was used to sim-

ulate from (36)–(38). For details on the MH algorithm see Chib and Greenberg (1996)

and Koop (2003). When simulating from (38) it was necessary to constrain ∑k sk < 150 to

avoid overflow errors in the evaluation of Γ(∑k sk). Finally, simulating from (39) involved

drawing N− 1 elements of α , computing the N-th element from the adding up constraint

∑n αn = 1, then rejecting the entire vector if any elements fell outside the unit interval.
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8. Data

The dataset comprises T = 37 annual observations on N = 4 outputs, M = 3 inputs and J =

4 environmental variables. The sample period extends from 1974 to 2010. Brief variable

descriptions and summary statistics are provided in Table 1. Data on outputs, inputs, vessel

length and engine size were provided by the Australian Fisheries Management Authority

(AFMA). Most of these data were originally sourced from daily logbooks and seasonal

vessel returns. Data on the Southern Oscillation Index (SOI) were obtained from the Bureau

of Meteorology.

Observe from Table 1 that the prawn harvest has been disaggregated by major species

type (banana, tiger, endeavour, king). This is partly because the NPF fleet tends to target

different species at different times of the year (i.e., production is nonjoint). For example,

the fleet usually targets banana prawns from the start of April until the start of June, and

tiger prawns from the start of August until the end of November. Another reason for dis-

aggregating total prawn output by species is that different trawling methods are used for

different species types. For example, banana prawns are found in dense concentrations in

water that is approximately ten metres deep. They emerge from the mud on the sea bed

early in the morning and create ‘mud boils’ about the size of a tennis court. Light aircraft

are used to spot these mud boils and pass the GPS co-ordinates to vessels in the fleet. Ves-

sels then ‘sound’ the location and identify a mark to ‘shoot’. In contrast, tiger prawns are

nocturnal, so vessels trawl for tiger prawns at night. Turtle excluding devices (TEDs) and

by-catch reduction devices (BRDs) are used on each net to minimise the impact of tiger

prawn fishing on non-target species (mainly turtles, dolphins and sharks). Observe from

Table 1 that trawl effort has been disaggregated into banana fishery effort and tiger fish-

ery effort. This allows for the fact that harvesting tiger prawns involves significantly more

trawl effort than target fishing of banana prawns.
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Other variables used in the analysis include the number of vessels, average vessel length

and average engine size. Whether these variables should be treated as inputs or environ-

mental variables is debatable. In this paper, the number of vessels is treated as an input.

Vessel length and engine size are treated as characteristics of the environment (skippers

working on small vessels with low engine power are viewed as operating in a different

production environment to skippers working on large vessels with more engine power).

All three variables are expected to have a positive effect on output and so all three associ-

ated coefficients are constrained to be nonnegative. Thus, irrespective of whether they are

treated as inputs or environmental variables, all vessel-related variables enter the estimating

equation (23) in logarithmic form with nonnegative coefficients.

Two other environmental variables are included in the model: the SOI is included be-

cause it is highly correlated with rainfall and, in turn, seasonal variations in rainfall are

believed to be strongly linked to seasonal variations in prawn stocks [Staples and Vance

(1986)]; and a time trend is included to account for any omitted variables that vary system-

atically over time.

Finally, data on several important variables were unavailable (e.g., communications

equipment, headrope length, number of aircraft). Anecdotal evidence suggests that many

of these omitted variables are highly correlated with included inputs (e.g., the number of

aircraft is correlated with banana effort days). Thus, the omission of these variables is not

expected to significantly bias the results.

9. Results

The MCMC sampling methods described in Section 6 were used to obtain 1.1 million

draws on the unknown parameters and inefficiency effects. The first 100,000 draws were

discarded as a “burn-in” and 10,000 of the remaining draws were retained (using a 1-in-100

systematic sampling scheme) for purposes of inference. Representative chains are plotted
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in Figure 1 and are clearly stationary. The estimates reported in this section are the means

of (functions of) these sample observations.

Table 2 reports estimated characteristics of the marginal posterior pdfs of key parameters.

The columns labelled “2.5%” and “97.5%” are estimated lower and upper bounds of 95%

highest posterior density (HPD) intervals.7 The prior pdf incorporates the inequality con-

straints discussed in Sections 5 and 7: αn ≥ 0 for n = 1, . . . ,4; βm ≥ 0 for m = 1,2,3; and

γ j ≥ 0 for j = 3,4. Thus, estimates of these parameters are guaranteed to be “correctly”

signed. The relative magnitudes of α̂1, . . . , α̂4 indicate that it is difficult for technically-

efficient vessels to substitute banana prawns for other prawn species.8 This reflects the

fact that banana prawns are generally harvested at a different time of the year and using

different trawling techniques to other species. The estimated coefficient of the time trend

(γ̂1 = −0.019) indicates that the production environment has been deteriorating at an av-

erage rate of 1.9% p.a. due to factors that could not be included in the analysis. This is

consistent with stock assessments that show significant depletion of prawn stocks prior to

the introduction of input controls in the second half of the sample period. Tighter controls

on omitted inputs (e.g., a 25% reduction in total allowable headrope length in 2002) may

themselves help to explain a deterioration in the “production environment”. The estimated

elasticity of scale (η̂ = 1.651) indicates that, in any given production environment, fishers

experience significant increasing returns to scale. Management controls designed to ensure

long-term sustainability of the fishery currently limit the ability of fishers to operate on a

scale that would maximise these returns (in any given year).

Table 3 reports estimates of TFP change (∆TFP), environmental change (∆ENV), output-

oriented technical efficiency change (∆OTE) and output-oriented scale efficiency change

(∆OSE) over the sample period. These are the environmental and efficiency change com-

ponents in (18). These estimates are also plotted in Figure 2. The interpretation of these

results is straightforward. For example, the estimates reported in the last row of Table 3

reveal that TFP in 2010 was nearly three times higher than it had been in 1974 due to
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the combined effects of a (4.21− 1) = 3.21 = 321% improvement in environmental con-

ditions, a 21% increase in technical efficiency, and a 44% fall in scale efficiency (i.e.,

∆TFP = ∆ENV ×∆OTE ×∆OSE = 4.21×1.21×0.56 = 2.86). Further insights into these

changes can be obtained from Figures 3 and 4.

Figure 3 shows how variations in the production environment (∆ENV) can be attributed

to changes in omitted variables that vary systematically over time (∆time), changes in the

Southern Oscilation Index (∆SOI), and variations in average vessel length and engine size

(∆length and ∆engine). The numbers behind this figure reveal that environmental con-

ditions in 2010 were 4.2 times better than they had been in 1974 due mainly to a 177%

increase in average vessel length and a 197% increase in average engine size (i.e., ∆ENV

= ∆time ×∆SOI ×∆length ×∆engine = 0.51× 1.00× 2.77× 2.97 = 4.21). Steady in-

creases in average vessel length and engine size over the sample period are a rational re-

sponse to the introduction of input controls in an industry that everywhere operates in a

region of increasing returns to scale (η̂ = 1.651).

Figure 4 illustrates the relationship between scale efficiency and input use. The esti-

mated technology everywhere exhibits increasing returns to scale, so scale efficiency is an

increasing function of aggregate input use. It is evident from Figure 4 that aggregate in-

put use (and scale efficiency) in the NPF has fallen steadily since the introduction of input

controls in the late 1970s. These input controls have included vessel replacement controls

(since 1980), vessel buy-back schemes (since the mid-1980s), bans on daylight trawling

(since 1987), and time and area closures (since 2002).

One of the advantages of the Bayesian approach is that it is possible to draw valid finite-

sample inferences concerning nonlinear functions of the unknown parameters (e.g., the

environmental change and efficiency change components of TFP change). To illustrate,

Figure 5 presents point and interval estimates of output-oriented technical efficiency levels

over the sample period (again, the labels “2.5%” and “97.5%” refer to the estimated lower

and upper bounds of 95% HPD intervals). Observe that the HPD intervals are unusually
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wide. This indicates that the the dataset (comprising only T = 37 time-series observations)

conveys an unusually small amount of information about the value of the output distance

function (a complicated nonlinear function of M +N + J + 1 = 12 parameters). Another

noticeable feature of Figure 5 is that the technical efficiency estimates are generally much

lower than ML estimates reported in earlier studies [the arithmetic average of the estimates

reported in Figure 5 is less than 0.5; Pascoe et al. (2012) estimate the level of OTE to be

0.8 in 2007; Kompas, Che, and Grafton (2004) report an average OTE score of 0.725 for

the period 1990–1996]. This is partly due to the fact that most of the estimated marginal

posterior pdfs are skewed to the left and so the means (i.e., the estimates depicted in Figure

5) are less than the modes (i.e., the values that maximise the likelihood). To give a better

sense of this effect, the bottom-right-hand panel in Figure 6 presents the estimated posterior

pdf for the level of technical efficiency in 1995. The mean of this estimated posterior pdf

is 0.59 but the mode is closer to 0.8.

Finally, Figure 6 also presents estimated posterior pdfs for the elasticity of scale (η)

and measures of productivity change (∆TFP) and scale efficiency change (∆OSE) over

the sample period. Again, the relatively large variances of these estimated pdfs reflect

the relatively small amount of information contained in the data. The estimated variances

would have been larger if binding non-sample information (i.e., the inequality constraints

on the parameters) had not been included in the estimation process.

10. Conclusion

The NPF is one of Australia’s most valuable trawl fisheries. The Australian Fisheries Man-

agement Authority (AFMA) manages the fishery with the aim of maximising sustainable

economic returns. Important input controls include area closures (e.g., in 2002–2004 the

season was shortened to only 134 days) and gear restrictions (e.g., in 2005 the allowable

headrope length was reduced by 25%). Input controls and vessel buyback schemes have
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together seen fleet numbers fall from more than 250 in the early 1980s to 52 in 2010. The

main aim of this paper has been to identify associated changes in TFP.

Several methods can be used to measure TFP change. The method used in this paper was

more or less dictated by the type of data that were available. The dataset consisted of a mere

T = 37 time-series observations on N = 4 output quantities, M = 3 input quantities, and

J = 4 characteristics of the production environment. Lack of price data ruled out the use

of price-based TFP indexes (e.g., Fisher, Törnqvist, Lowe), lack of cross-section data ruled

out the use of nonparametric estimation methods (e.g., DEA, FDH), and the small number

of observations ruled out the use of econometric estimators that only have asymptotic (i.e.,

large sample) justification (e.g., maximum likelihood). In this paper, the most sensible (and

possibly the most difficult) way forward involved using Bayesian econometric methods to

estimate a Färe-Primont TFP index. Unlike the sampling theory approach to inference, the

Bayesian approach can be used to make valid finite-sample inferences concerning nonlinear

functions of the model parameters (e.g., measures of TFP change). Unlike the well-known

Fisher, Törnqvist and Hicks-Moorsteen TFP indexes, the Färe-Primont index is proper in

the sense that the component output and input quantity indexes satisfy all economically-

relevant axioms from index number theory.

The main results were summarised in terms of characteristics (e.g., means, standard de-

viations) of estimated posterior pdfs for measures of TFP change, environmental change,

technical efficiency change, and scale efficiency change. Between 1974 and 2010, produc-

tivity in the fishery is estimated to have increased by 186% due to the combined effects

of a 321% improvement in the production environment, a 21% increase in output-oriented

technical efficiency, and a 44% fall in output-oriented scale efficiency (i.e., ∆TFP = ∆ENV

×∆OTE ×∆OSE = 4.21×1.21×0.56 = 2.86). Improvements in the “production environ-

ment” were associated with increases in average vessel length and engine size (skippers

working on large vessels with significant engine power are today working in a better op-

erating environment than skippers who worked on smaller vessels in 1974). The reduction
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in scale efficiency was attributed to downsizing in an industry that experiences increasing

returns to scale (the estimated elasticity of scale was 1.651). Policy-makers will be inter-

ested (and possibly pleased) to know that variations in the components of TFP change were

strongly linked to changes in fishery management.

Appendix

Proposition D1: If the output distance function exists and the technology is EHON (⇐

EHN) then the production function can be written F(x,z) = b(z)/DO(x,b(µz),µz).

Proof : If the output distance function exists then F(x,z) = {q : DO(x,q,z) =

1} = {q : q = 1/DO(x,1,z)} ⇒ F(x,z) = 1/DO(x,1,z). Then EHON ⇒

DO(x,q,z) = b(µz)DO(x,q,µz)/b(z) ⇒ DO(x,1,z) = b(µz)DO(x,1,µz)/b(z) =

DO(x,b(µz),µz)/b(z) ⇒ 1/DO(x,1,z) = b(z)/DO(x,b(µz),µz) ⇒ F(x,z) =

b(z)/DO(x,b(µz),µz)

Proposition D2: If the production function can be written F(x,z) = b(z)/DO(x,b(µz),µz)

then the technology is EHN.

Proof : F(x,z) = {q : DO(x,q,z) = DI(x,q,z) = 1} ⇒ F(x,z) = 1/DO(x,1,z).

If F(x,z) = b(z)/DO(x,b(µz),µz) then 1/DO(x,1,z) = b(z)/DO(x,b(µz),µz) ⇒

DO(x,1,z) = DO(x,b(µz),µz)/b(z) = b(µz)DO(x,1,µz)/b(z) ⇒ DO(x,q,z) =

b(µz)DO(x,q,µz)/b(z) (i.e., EHON). Furthermore, DO(x,q,z) = DI(x,q,z) = 1⇒

DI(x,q,z) = b(µz)DO(x,q,µz)/b(z) ⇒ DI(x,q,µz) = b(µz)DO(x,q,µz)/b(µz) ⇒

DI(x,q,µz)=DO(x,q,µz)⇒DI(x,q,z)= b(µz)DI(x,q,µz)/b(z)= a(z)DI(x,q,µz)/a(µz)

where a(z)≡ 1/b(z) (i.e., EHIN)

Proposition D3: The following statements are equivalent:

A: (x,q) ∈ T (z)⇔ (λx,λ rq) ∈ T (z) for all λ > 0

B: P(λx,z) = λ rP(x,z) for all λ > 0

C: L(λq,z) = λ 1/rL(q,z) for all λ > 0
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Proof:

(A⇒ B): Let δ = λ rq. Then A⇒ P(x,z) = {q : (x,q) ∈ T (z)} = {q : (λx,λ rq) ∈

T (z)} = {λ−rλ rq : (λx,λ rq) ∈ T (z)} = {λ−rδ : (λx,δ ) ∈ T (z)} = λ−r{δ :

(λx,δ ) ∈ T (z)}= λ−rP(λx,z)⇒ P(λx,z) = λ rP(x,z)

(B ⇒ A): It is always the case that (x,q) ∈ T (z) if and only if q ∈ P(x,z). Thus,

(x,q) ∈ T (z)⇔ q ∈ P(x,z)⇔ λ rq ∈ λ rP(x,z)⇔ λ rq ∈ P(λx,z) (using B)⇔

(λx,λ rq) ∈ T (z)

(A ⇒ C): Let δ = λ 1/rx. Then A ⇒ L(q,z) = {x : (x,q) ∈ T (z)} = {x :

(λ 1/rx,λq) ∈ T (z)} = {λ−1/rδ : (δ ,λq) ∈ T (z)} = λ−1/r{δ : (δ ,λq) ∈

T (z)}= λ−1/rL(λq,z)⇒ L(λq,z) = λ 1/rL(q,z)

(C ⇒ A): It is always the case that (x,q) ∈ T (z) if and only if x ∈ L(q,z). Thus,

(x,q)∈ T (z)⇔ x ∈ L(q,z)⇔ λ 1/rx ∈ λ 1/rL(q,z)⇔ λ 1/rx ∈ L(λq,z) (using C)

⇔ (λ 1/rx,λq) ∈ T (z)

Proposition D4: If the output distance function exists and outputs are weakly disposable

(T4) then the following statements are equivalent:

B: P(λx,z) = λ rP(x,z) for all λ > 0

D: DO(λx,q,z) = λ−rDO(x,q,z) for all λ > 0

Proof: It is always the case that (x,q)∈ T (z) if and only if q∈P(x,z). T4 is necessary

and sufficient for the validity of the following statement: q ∈ P(x,z) if and only if

DO(x,q,z) ≤ 1 [Färe and Primont (1995, pp. 15, 16, 22)]. A corollary is that if T4

holds then and only then P(x,z) = {q : DO(x,q,z)≤ 1}.

(B⇒ D): Let κ = δλ r. Then B⇒ DO(λx,q,z) = inf{δ > 0 : q/δ ∈ P(λx,z)} =

inf{δ > 0 : q/δ ∈ λ rP(x,z)} = inf{δ > 0 : q/(δλ r) ∈ P(x,z)} = inf{λ−rκ >

0 : q/κ ∈ P(x,z)}= λ−r inf{κ > 0 : q/κ ∈ P(x,z)}= λ−rDO(x,q,z)
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(D ⇒ B): Let κ = λ−rq. Then D ⇒ P(λx,z) = {q : DO(λx,q,z) ≤ 1} = {q :

λ−rDO(x,q,z) ≤ 1} = {q : DO(x,λ−rq,z) ≤ 1} = {λ rκ : DO(x,κ,z) ≤ 1} =

λ r{κ : DO(x,κ,z)≤ 1}= λ rP(x,z)

Proposition D5: If the input distance function exists and inputs are weakly disposable (T5)

then the following statements are equivalent:

C: L(λq,z) = λ 1/rL(q,z) for all λ > 0

E: DI(x,λq,z) = λ−1/rDI(x,q,z) for all λ > 0

Proof: It is always the case that (x,q)∈ T (z) if and only if x∈ L(q,z). T5 is necessary

and sufficient for the validity of the following statement: x ∈ L(q,z) if and only if

DI(x,q,z) ≥ 1 [Färe and Primont (1995, p.22)]. A corollary is that if T5 holds then

and only then L(q,z) = {x : DI(x,q,z)≥ 1}.

(C⇒ E): Let κ = ρλ 1/r. Then C⇒ DI(x,λq,z) = sup{ρ > 0 : x/ρ ∈ L(λq,z)}=

sup{ρ > 0 : x/ρ ∈ λ 1/rL(q,z)} = sup{ρ > 0 : x/(ρλ 1/r) ∈ L(q,z)} =

sup{λ−1/rκ > 0 : x/κ ∈ L(q,z)} = λ−1/r sup{κ > 0 : x/κ ∈ L(q,z)} =

λ−1/rDI(x,q,z)

(E ⇒ C): Let κ = λ−1/rx. Then E ⇒ L(λq,z) = {x : DI(x,λq,z) ≥ 1} = {x :

λ−1/rDI(x,q,z)≥ 1}= {x : DI(λ
−1/rx,q,z)≥ 1}= {λ 1/rκ : DI(κ,q,z)≥ 1}=

λ 1/r{κ : DI(κ,q,z)≥ 1}= λ 1/rL(q,z)

Proposition D6: If the output and input distance functions exist, outputs are weakly

disposable (T4) and the technology is HDr then DO(x,q,z) = DI(x,q,z)−r.

Proof : T4 is necessary and sufficient for the validity of the following statement:

q ∈ P(x,z) if and only if DO(x,q,z) ≤ 1 [Färe and Primont (1995, pp. 15, 16,

22)]. It is always the case that (x,q) ∈ T (z) if and only if q ∈ P(x,z). Thus, T4

⇒ DI(x,q,z) = sup{ρ > 0 : (x/ρ,q) ∈ T (z)} = sup{ρ > 0 : q ∈ P(x/ρ,z)} =

sup{ρ > 0 : DO(x/ρ,q,z) ≤ 1}. T4 and HDr ⇒ DO(λx,q,z) = λ−rDO(x,q,z)
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for all λ > 0 (Propositions D3 and D4). Thus, T4 and HDr ⇒ DI(x,q,z) =

sup{ρ > 0 : DO(x/ρ,q,z)≤ 1}= sup{ρ > 0 : ρrDO(x,q,z)≤ 1}= sup{ρ > 0 : ρ ≤

DO(x,q,z)−1/r}= DO(x,q,z)−1/r. Equivalently, DO(x,q,z) = DI(x,q,z)−r

Proposition D7: If the output and input distance functions exist, inputs are weakly dispos-

able (T5) and the technology is HDr then DO(x,q,z) = DI(x,q,z)−r.

Proof : T5 is necessary and sufficient for the validity of the following statement:

x ∈ L(q,z) if and only if DI(x,q,z)≥ 1 [Färe and Primont (1995, p.22)]. It is always

the case that (x,q)∈ T (z) if and only if x∈ L(q,z). Thus, T5⇒DO(x,q,z) = inf{δ >

0 : (x,q/δ ) ∈ T (z)} = inf{δ > 0 : x ∈ L(q/δ ,z)} = inf{δ > 0 : DI(x,q/δ ,z) ≥ 1}.

T5 and HDr ⇒ DI(x,λq,z) = λ−1/rDI(x,q,z) for all λ > 0 (Propositions D3 and

D5). Thus, T5 and HDr⇒DO(x,q,z) = inf{δ > 0 : DI(x,q/δ ,z)≥ 1}= inf{δ > 0 :

δ 1/rDI(x,q,z)≥ 1}= inf{δ > 0 : δ ≥ DI(x,q,z)−r}= DI(x,q,z)−r

Proposition D8: If a regular technology is EH, EHN and HDr then DO(x,q,z) ∝

h(q)r/(b(z)g(x)) and DI(x,q,z) ∝
(
b(z)g(x)

)1/r
/h(q) where h(.) is NN, ND and

homogeneous of degree 1/r and g(.) is NN, ND and HDr.

Proof : EOH⇒DO(x,q,µz) = g(µx)DO(µx,q,µz)/g(x) (A). EHON⇒DO(x,q,z) =

b(µz)DO(x,q,µz)/b(z) = b(µz)g(µx)DO(µx,q,µz)/[b(z)g(x)] (using A)

⇒ DO(x,µq,µz) = g(µx)DO(µx,µq,µz)/g(x)⇒ DO(x,µq,µz)
−1/r

= g(µx)
−1/rDO(µx,µq,µz)

−1/rg(x)1/r (B). HDr ⇒ DI(x,q,z) = DO(x,q,z)−1/r

(from D6 or D7) ⇒ DI(x,µq,µz) = DO(x,µq,µz)
−1/r (D). Thus, EOH, EHON

and HDr ⇒ DI(x,µq,µz) = g(µx)
−1/rDO(µx,µq,µz)

−1/rg(x)1/r (using B

and D) (E). EIH ⇒ DI(x,q,µz) = h(µq)DI(x,µq,µz)/h(q) (F). EHIN ⇒

DI(x,q,z) = a(z)DI(x,q,µz)/a(µz) (G). Thus, EH, EHN and HDr ⇒ DI(x,q,z) =

a(z)h(µq)DI(x,µq,µz)/[h(q)a(µz)] (using F and G)⇒ DI(x,q,z)

= a(z)h(µq)g(µx)
−1/rDO(µx,µq,µz)

−1/rg(x)1/r/[h(q)a(µz)] (using E). The left-

hand side is independent of (µx,µq,µz) so the right-hand side must also also be

27



independent of (µx,µq,µz) ⇒ DI(x,q,z) ∝ a(z)g(x)1/r/h(q) =
[
b(z)g(x)

]1/r
/h(q)

where b(z) = a(z)r ⇒ DO(x,q,z) ∝ h(q)r/[b(z)g(x)] (from D6 or D7). If the

technology is regular (i.e., T1-T6 hold) then the output (input) distance function is

NN, ND and HD1 in outputs (inputs)⇒ h(.) is NN, ND and homogeneous of degree

1/r and g(.) is NN, ND and HDr

Proposition D9: If the distance function representations of a regular technology are

DO(x,q,z) ∝ h(q)r/(b(z)g(x)) and DI(x,q,z) ∝
(
b(z)g(x)

)1/r
/h(q) where h(.) is

NN, ND and homogeneous of degree 1/r and g(.) is NN, ND and HDr then the

technology is EH, EHN and HDr.

Proof : DO(x,q,z) = κh(q)r/(b(z)g(x)) and DI(x,q,z) = τ
(
b(z)g(x)

)1/r
/h(q)

where κ and τ are factors of proportionality.

(HDr): DO(x,q,z) = κh(q)r/(b(z)g(x))⇒ DO(λx,q,z) = κh(q)r/(b(z)g(λx)
)
=

λ−rκh(q)r/(b(z)g(x))= λ−rDO(x,q,z)⇒ (from D4 and g(.) being HDr).

(EOH): DO(x,q,z) = κh(q)r/(b(z)g(x))⇒ DO(µx,q,z) = κh(q)r/(b(z)g(µx)
)
⇒

g(µx)DO(µx,q,z)/g(x) = κh(q)r/(b(z)g(x))= DO(µx,q,z).

(EIH): DI(x,q,z) = τ
(
b(z)g(x)

)1/r
/h(q)⇒DI(x,µq,z) = τ

(
b(z)g(x)

)1/r
/h(µq)⇒

h(µq)DI(x,µq,z)/h(q) = τ
(
b(z)g(x)

)1/r
/h(q) = DI(x,q,z).

(EHON): DO(x,q,z) = κh(q)r/(b(z)g(x))⇒ DO(x,q,µz) = κh(q)r/(b(µz)g(x)
)

⇒ b(µz)DO(x,q,µz)/b(z) = κh(q)r/(b(z)g(x))= DO(µx,q,z).

(EHIN): DI(x,q,z)= τ
(
b(z)g(x)

)1/r
/h(q)⇒DI(x,q,µz)= τ

(
b(µz)g(x)

)1/r
/h(q)⇒

b(z)1/rDI(x,µq,z)/b(µz)
1/r = τ

(
b(z)g(x)

)1/r
/h(q) = DI(x,q,z). Equivalently,

a(z)DI(x,µq,z)/a(µz) = DI(x,q,z) where a(z) = b(z)1/r.
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Notes

1This paper was prepared for presentation in the Workshop on Productivity Measure-

ment in Regulated Industries, Santa Cruz, CA, 11–12 June 2012. Valuable comments were

provided by John Walden, Aaron Mamula, Kris Kerstens and several other participants.

I gratefully acknowledge the work of NPF fishers, the CSIRO and AFMA in reporting,

collecting and managing the data.

2In this case, only one observation will be available to estimate the frontier in each time

period, and all observations will be found to lie on the frontier. Thus, the environmental

change and technical change components of TFP change cannot be identified.

3ND ⇒ if qr ≥ qt then Q(qr) ≥ Q(qt). Then NN ⇒ Q(qr)/Q(qs) ≥ Q(qt)/Q(qs)⇔

QIsr ≥ QIst (i.e., Q1). Proofs of Q2, Q4 and Q6 are straightforward using HD1 ⇒

Q(λqt) = λQ(qt). Proofs of Q3 and Q7 are trivial. Finally, QI(Λqs,Λqt ,Λ
−1as,Λ

−1at) =

(a′tΛ
−1Λqt)/(a′sΛ

−1Λqs) = (a′tqt)/(a′sqs) = QI(qs,qt ,as,at) (i.e., Q5).

4If E(vt) = µv 6= 0 then (23) can be reparameterised in terms of v∗t = vt −µv and γ∗0 =

γ0 + µv (i.e., the nonzero mean can be subsumed into the intercept term). The notation

fN(a|b,C) is used for a normal pdf with mean vector b and covariance matrix C.

5The notation fD(a|b) is the notation for a Dirichlet distribution used by Poirier (1995,

p.132). If a=(a1, . . . ,aN)
′ and b=(b1, . . . ,bN)

′ then E(an)= bn/b0 and Var(an)= bn(b0−

bn)/(b3
0 +b2

0) where b0 = ∑n bn.

6The notation fG(a|b,c) is used for a gamma pdf with mean vector b/c and variance

b/c2. If b = 1 then fG(a|b,c) is an exponential pdf.

7An HPD interval is the Bayesian analogue of a confidence interval: a 100(1−α)%

HDR is the interval of shortest length that contains 100(1−α)% of the area under the pdf.
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8The (k,n)-th marginal rate of technical transformation measures the rate at which out-

put n can be substituted for output k in a technically efficient production process, holding

inputs, environmental variables and all other outputs fixed. If the error terms in (19)–(22)

vanish then MRT Tkn = αn/αk.
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Figure 1. Selected MCMC Chains
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Figure 2. The Components of TFP Change
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Figure 3. The Components of Environmental Change
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Figure 4. Changes in Output-Oriented Scale Efficiency
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Figure 5. Levels of Output-Oriented Technical Efficiency
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Figure 6. Estimated Posterior Pdfs
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Tables

Table 1. Descriptive Statistics

Mean St. Dev. Min. Max.

q1 = banana prawns (tonnes) 4290.51 1960.58 2157 12711
q2 = tiger prawns (tonnes) 2847.84 1332.76 666 5751
q3 = endeavour prawns (tonnes) 944.22 540.49 196 2124
q4 = king prawns (tonnes) 52.14 47.42 3 207

x1 = number of vessels 161.03 70.71 51 286
x2 = banana fishery effort (days) 5777.24 1898.81 2696 11524
x3 = tiger fishery effort (days) 16763.27 9502.22 3439 34551

lnz1 = time 23 11 5 41
lnz2 = SOI -1.24 7.23 -13.1 13.6
z3 = average vessel length (metres) 21.59 0.60 19.22 22.47
z4 = average engine power (kw) 325.56 40.31 245.22 394.94
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Table 2. Parameter Estimates

Mean St.Dev. 2.5% 97.5%

α̂1 (banana) 0.002 0.002 0.000 0.006
α̂2 (tiger) 0.042 0.032 0.004 0.124
α̂3 (endeavour) 0.120 0.095 0.009 0.352
α̂4 (king) 0.836 0.090 0.625 0.965

γ̂0 -39.566 20.457 -86.976 -9.089
γ̂1 (time) -0.019 0.035 -0.099 0.040
γ̂2 (SOI) 0.002 0.022 -0.039 0.050
γ̂3 (length) 6.715 5.230 0.239 19.265
γ̂4 (engine) 2.281 2.152 0.069 8.030

β̂1 (vessels) 0.571 0.469 0.018 1.714
β̂2 (banana effort) 0.789 0.594 0.032 2.158
β̂3 (tiger effort) 0.291 0.221 0.011 0.818

ŝ1 2.096 0.869 0.912 4.286
ŝ2 24.794 20.148 2.318 79.795
ŝ3 23.129 20.233 1.516 77.063
ŝ4 8.022 5.653 0.828 22.743

η̂ (RTS) 1.651 0.704 0.533 3.197
λ̂ 1.275 0.491 0.447 2.372
ĥ (precision) 899.620 2640.400 0.232 6850.300
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Table 3. The Components of TFP Change

Year ∆TFP ∆ENV ∆OTE ∆OSE
1974 1 1 1 1
1975 1.240 1.954 0.846 0.750
1976 1.261 2.255 0.659 0.848
1977 2.162 1.956 1.055 1.047
1978 2.691 2.262 1.135 1.049
1979 2.639 1.738 1.270 1.196
1980 2.796 2.045 1.084 1.261
1981 2.477 2.402 0.799 1.291
1982 2.955 2.370 0.998 1.250
1983 3.450 2.679 1.104 1.167
1984 2.872 2.950 0.929 1.048
1985 2.581 3.435 0.755 0.995
1986 1.700 3.706 0.493 0.930
1987 1.819 3.180 0.574 0.997
1988 1.914 3.479 0.593 0.928
1989 1.965 3.439 0.597 0.956
1990 2.671 3.110 0.926 0.927
1991 2.605 2.726 0.979 0.976
1992 2.245 2.580 0.966 0.901
1993 2.000 2.463 0.916 0.887
1994 2.852 2.641 1.198 0.901
1995 3.565 2.940 1.356 0.894
1996 2.594 3.071 1.000 0.844
1997 3.519 2.858 1.292 0.953
1998 2.799 2.874 1.119 0.871
1999 2.065 2.937 0.861 0.816
2000 2.525 2.943 1.143 0.751
2001 2.232 3.056 0.890 0.820
2002 1.714 3.218 0.781 0.682
2003 1.952 3.701 0.815 0.647
2004 1.718 3.718 0.735 0.629
2005 1.916 3.908 0.815 0.602
2006 2.437 4.087 0.987 0.604
2007 2.141 4.083 1.022 0.513
2008 1.710 3.913 0.842 0.519
2009 2.231 3.860 1.050 0.550
2010 2.861 4.205 1.212 0.561
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Abstract

The use of the convex hull estimation in data envelopment analysis (DEA) models is often charac-

terized as a variable returns to scale model. However it is well known that standard microeconomic

production theory posits a nonconvex S-shaped production frontier, i.e. a production technologies that

obey the Regular Ultra Passum Law with a monotone decreasing scale elasticity along any expansion

path. Recently for a homothetic production relation a nonparametric estimation approach that allows

for a nonconvex S-shaped scaling law has been proposed. In this paper we use this approach to analyze

and estimate scale characteristics of the US West Coast groundfish production for the period 2004-2007.

1 Introduction

The non-parametric DEA approach involves the construction of a piecewise linear envelopment of observed

data. The characteristics of a DEA model are derived from a number of maintained hypotheses imposed

as part of the model. An estimator often used in DEA is the convex hull estimator also denoted the BCC-

estimator (Banker, Charnes and Cooper 1984), which is a variable returns to scale estimator, and where

the estimated production possibility set is polyhedral. The convex hull estimator maintains convexity of the
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production possibility set. Convexity is a convenient assumption in the sense that easy estimation procedures

are available based on linear programming. But it is important to stress that this assumption is not in general

supported by microeconomic theory. The assumption of convexity of input sets and output sets is supported

in microeconomics but the scaling law can in general have many different shapes. In a recent paper (Olesen

and Ruggiero 2012) suggest an approach that allows for an estimator which reflects possible segments with

increasing returns to scale. This suggested approach is in contrast to the convex hull estimator which rely

on an assumption of non-increasing marginal products, thereby violating standard microeconomic theory.

The estimation approach suggested in (Olesen and Ruggiero 2012) is designed to uncover non-convexities

that reflects the Regular Ultra Passum (RUP) law, ((Frisch 1965) Chapter 8) stating that for the case of one

output along any expansion path in factor space, optimal scale size is unique (or possibly connected intervals

of sizes) and that the scale elasticity is monotonic decreasing:

Definition 1 The RUP law. Let a single output y be produced from a vector of m inputs x according to a

production function F (x, y) = 0. This production function obeys the RUP law if ∂ε(x,y)
∂xi

< 0, i = 1, · · · ,m

where the function ε (x, y) is the scale elasticity, and for some point (x1, y1) we have ε (x1, y1) > 1, and for

some point (x2, y2), where x2 > x1, y2 > y1, we have ε (x2, y2) < 1.

A non-convex S-shaped technology is characterized as follows: along any expansion path an expanding

DMU with low activity will have a high scale elasticity greater than one. As the unit expands its activity

the scale elasticity will decrease and will approach optimal scale size with an elasticity equal to one. Further

expansion will imply decreasing returns with a scale elasticity less than one and approaching zero.

Maintaining the RUP law requires that the scale elasticity is monotonically decreasing for increasing

production. (Førsund and Hjalmarsson 2004a) have demonstrated how well established core concepts from

neoclassical theory such as scale elasticity can be fruitfully translated and applied within the non parametric

DEA approach. However, (Førsund and Hjalmarsson 2004b) argue that while the theoretical concepts as

such carry over to the piecewise linear frontier, the RUP-law simply cannot be obeyed, not even with data

generated in a process consistent with the law. This is a simple consequence of marginal productivity being

constant while average productivity is decreasing when passing along a decreasing returns to scale facet1.

Notice however, the piecewise linear frontier is an outer approximation to a true smooth frontier. Hence,

only asymptotically will we see a smooth estimator of the frontier and only if the estimated piecewise linear

frontier is S-shaped will we see a smooth estimator that obeys the RUP law. In other words, the violation

discussed in (Førsund and Hjalmarsson 2004b) disappears asymptotically, see (Olesen and Petersen 2011).

One particular problem with the BCC model is the use of the convex hull estimator in the envelopment

of data points. Using supporting hyperplanes for envelopment can overestimate inefficiency for points that
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should be projected to the local non-convex segments of the true frontier characterized by increasing returns

to scale. Further, existing measures of scale efficiency are biased due to the improper projection. Maintaining

the RUP-law adds structure to the estimation process that will allow us to recover the scale elasticity and

the inefficiency of such DMUs.

The main contribution of (Olesen and Ruggiero 2012) is the development of an approach that is capable

of measuring scale elasticities and inefficiencies for production possibilities in a non-convex homothetic and

S-shaped technology. The proposed model assumes one output and multiple inputs. The assumption of

homotheticity allows for an aggregation procedure of multiple inputs into an aggregated input index.

A homothetic production function was introduced in ((Shephard 1953),page 30). The notion was gen-

eralized in (Shephard 1970) to the multi-output case. A homothetic production function is a monotonic

transformation of a linear homogenous production function. Assuming an input homothetic production

structure allows us to estimate the isoquants because homotheticity implies that the shape of the isoquants

are identical. This allows us to maintain convexity in input (and output space) and to allow non-convexities

in input-output space. The proposed approach relies on the order-m estimation procedures, (Cazals, Flo-

rens and Simar 2002) with local convexity as proposed and formalized in (Daraio and Simar 2005). The

order-m models are derived in quite general terms in the sense that no formal structure beyond the minimal

DEA assumptions is imposed. For the purpose of this paper we do have additional structure that should

be imposed on the estimation procedure. In addition to the traditional maintained hypothesis of strong

disposability, returns to scale, minimal extrapolation we focus on the situation where it is reasonable impose

i) a maintained hypothesis of homotheticity and ii) a maintained hypothesis of a monotonic declining scale

elasticity along any expansion path.

The illustrative application of the model presented below in Section 6 is based on a data set with catch

records from fishery in the Pacific Ocean during the period 2004-2007. The output data is aggregated into

four different outputs, primarily based on the condition of the fishery. One variable input "days at sea" and

one quasi-fixed input "vessel length" are available. With multiple outputs we change focus to an output

homothetic relationship. Hence we estimate the S-shaped production relation based on an assumption of

output homotheticity which allows us to aggregate the outputs into an output index. In the application

we either ignore the quasi-fixed input or incorporate indirectly the impact from this input on the estimated

shape of the base isoquant.

We have chosen not to implement a full multiple input multiple output model for several reasons:

• It is not clear how the long run substitution between the variable and the quasi fixed inputs works. It

is not a traditional microeconomic substitution with positive substitution elasticities in the full range
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of the quasi-fixed input.

• The approach suggested in (Olesen and Ruggiero 2012) assumes one output and multiple inputs with

input homotheticity. It is straight forward to change focus to one input multiple outputs maintaining

output homotheticity. However, maintaining input and output homotheticity with multiple inputs and

outputs requires a more complicated estimation procedure of the isoquants because we simultaneously

have to estimate both a base input and a base output isoquant.

In order to move to a one input aggregated output space, we need to estimate the base output isoquant.

Assuming selective output convexity we use a simplified order-m estimation procedure (Cazals et al. 2002)

where replications are avoided. The order-m estimation procedures include a conditional estimation model

maintaining selective convexity of the output sets2. Under the assumption of output homotheticity, we can

aggregate output allowing us to move to a two dimensional input aggregate-output space.

As mentioned above, the traditional DEA approach using a convex technology, as originally presented

in the BCC model, fails since part of a technology satisfying the RUP law is non-convex. It is argued in

(Olesen and Ruggiero 2012) that several non-convex models exists (see e.g. (Petersen 1990),(Bogetoft 1996)),

but these models are not well-suited to estimate an S-shaped production structure. These general non-

convex models tend to pick up many non-convexities that in fact may be a consequence of fitting data

to closely. The approach suggested in (Olesen and Ruggiero 2012) and applied in this paper introduces

structure into the estimation procedure by allowing only non-convexities that are reflected in an S-shaped

production structure. More precisely, the following axioms are maintained on the production possibility set

T = {(x, y) : x can produce y}, with a scalar output y ∈ R+:

Axiom 1 (Feasibility of observed data). For any j = 1, . . . , n, (Xj , Yj) ∈ T

Axiom 2 (Free disposability).(X,Y ) ∈ T , Y ≥ bY ≥ 0 and X ≤ bX implies
³ bX, bY ´ ∈ T .

Axiom 3 (Convexity of input set ). Let
³ eX´ ∈ L(Y ) and

³ bX´ ∈ L(Y ). Then λ
³ eX´+(1− λ)

³ bX´ ∈ L(Y ),

for any λ ∈ [0, 1], where L(Y ) = {X ∈ Rs+ : X can produce Y }

Axiom 4 (Input Homotheticity). The technology T is input homothetic

In addition to these axioms it is assumed that the technology satisfies the RUP law in Definition 1.

Notice that convexity of the input set by Axiom 3 does not imply convexity of the production possibility

set T . Conversely, maintaining convexity of T using e.g. the BCC-model implies convexity of the input set

L(Y ).
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The rest of the paper is organized as follows. In section 2-3 we define the production technology, from an

input orientation using an input distance function and from an output orientation using an output distance

function. The assumption of homotheticity is presented and the implication for input or output aggregation

is discussed. Specifically, the assumption of output homotheticity allows us to generate any output isoquant

from a base output isoquant and hence, derive a well-defined index of aggregate output. Section 4 is devoted

to the estimation of the base isoquant using a conditional estimator. We also discuss criteria for selecting

a well-estimated isoquant among all possible base isoquants to aggregate output. In section 5 we focus on

how to estimate the piecewise linear S-shaped frontier. In section 6 we apply this approach to data from

US West Coast groundfish production for the period 2004-2007. The focus is on estimating an S-shaped

input consumption function based on an assumption of output homotheticity. The last section concludes

with directions for future research.

2 Production Technology, multiple inputs and one output

Recently (Olesen and Ruggiero 2012) have suggested an approach based on an assumption of input homo-

theticity that allows for an S-shaped estimator which reflects possible segments with increasing returns to

scale. Focus is on the classical production function with one output Y and multiple inputs X = (x1, . . . , xs).

Even though we in the application of the model in this paper will focus on the case with one input multiple

outputs we will briefly mention how the suggested method works for a production function. We represent

the production technology with the input set L(Y ) = {X ∈ Rs+ : X can produce Y } which has isoquant

IsoqL(Y ) = {X : X ∈ L(Y ), λX /∈ L(Y ), λ ∈ [0, 1)}. Since we assume that only one output is produced,

we can define a production function as φ (X) = max {Y : X ∈ L(Y )}. The input distance function is then

defined as DI(Y,X) = max {γ : X/γ ∈ L(Y )}, which provides an alternative characterization of the technol-

ogy since DI(Y,X) ≥ 1 ⇔ X ∈ L(Y ). Finally, the index of technical efficiency proposed by Debreu (1951)

and Farrell (1957) is given as FI(Y,X) = min {γ : γX ∈ L(Y )}, where FI(y, x) = DI(y, x)
−1. Additional

structure is imposed by assuming that production is input homothetic.

Definition 2 A production function φ(X) is input homothetic

Y = φ(X) = F (g(X))

where F () : R+ → R+ is monotonic and g(λX) = λg(X) i.e. g() is positive homogeneous of degree one and

continuously differentiable (see (Shephard 1970)). g() is denoted the kernel function.



Authors: O. B. Olesen and J. Ruggiero and A. T. Mamula, The Santa Cruz Workshop, 2012 6

From the definition, we see that a homothetic production function can be represented as a production

process whereby the input vector X can be aggregated into a one dimensional input index g(X), i.e. output

is determined from the level of aggregate input (see (Färe and Lovell 1988) for a more general result). From

(Olesen and Ruggiero 2012) we have the following proposition.

Proposition 5 Assume a homothetic technology with one output. The distance function evaluated at (1,X)

is equal to aggregate input defined from the core function in the homothetic production function multiplied

by a constant, i.e.

DI(1,X) = kI × g(X), kI ∈ R+

The dimensionality of DEA models can according to Proposition 1 be reduced under the assumption of

homotheticity. Homotheticity allows us to span the production technology from L(1) (see (Shephard 1970),

page 34). Let H(Y ) be a scaling function then L(Y ) = H(Y )L(1). Any input sets can in this way be

generated from a base input set by a scaling function H(Y ) depending only on the level of output and not

the input mix. From this follows that IsoqL(Y ) = H(Y )IsoqL(1). More generally, we could choose any

output level and its associated isoquant to serve as the base.

3 Production Technology, multiple output and one input

In Section 6 we apply the approach outlined above to estimate scale characteristics of the US West Coast

groundfish production for the period 2004-2007. This application involves a production with multiple outputs

and one variable input. For that purpose we need to change focus to an output homothetic relationship. Let

us consider a production environment where a vector of p outputs Y = (y1, . . . , yp) is produced using one

input X. We represent the production technology with the output set P (X) = {Y ∈ Rp+ : X can produce

Y } which has isoquant

IsoqP (X) = {Y : Y ∈ P (X), λY /∈ P (X), λ ∈ (1,∞)}. (1)

Since we assume that only one input is consumed, we can define an input consumption function as

φ (Y ) = min {X : Y ∈ P (X)} (2)

The output distance function is then defined as

DO(Y,X) = min {γ : Y/γ ∈ P (X)} , (3)
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which provides an alternative characterization of the technology since DO(Y,X) ≤ 1⇔ Y ∈ P (X). Finally,

the output oriented index of technical efficiency that serves as basis for DEA is given as

FO(Y,X) = max {γ : γY ∈ P (X)} , (4)

where FO(y, x) = DO(y, x)
−1.

We now assume that the input consumption function is output homothetic.

Definition 3 An input consumption function φ(Y ) is output homothetic if

X = φ(Y ) = F (g(Y ))

where F () : R+ → R+ is monotonic and g(λY ) = λg(Y ) i.e. g() is positive homogeneous of degree one and

continuously differentiable. g() is denoted the kernel function.

From the definition, we see that an output homothetic input consumption function can be represented as

a consumption process whereby the output vector Y can be aggregated into a one dimensional output index

g(Y ), i.e. input is determined from the level of aggregate output. We can now state a similar proposition

generated from the assumption of output homotheticity:

Proposition 6 Assume an output homothetic technology with one input. The output distance function eval-

uated at (Y, 1) is equal to aggregate output defined from the core function in the homothetic input consumption

function multiplied by a constant, i.e.

DO(Y, 1) = kO × g(Y ), kO ∈ R+

Proof. Let φ(Y ) = F (g(Y )) with F−1 = f . We know that

P (x) = {Y : F (g(Y )) ≤ x}

= {Y : g(Y ) ≤ f (y)}
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Furthermore,

DO(Y, 1) = min {γ : Y/γ ∈ P (1)}

= min {γ : Y/γ ∈ {Y : g(Y ) ≤ f (1)}}

= min {γ : g(Y/γ) ≤ f (1)}

= min
©
γ : γ−1g(Y ) ≤ f (1)

ª
= min {γ : g(Y ) ≤ γf (1)}

= {γ : g(Y ) = γf (1)}

= (f(1))
−1 × g(Y )

Proposition 2 establishes that the dimensionality of DEA models can be reduced under the assumption

of output homotheticity. In addition, homotheticity allows us to span the production technology from P (1)

(see (Shephard 1970)).

4 Estimating the Base Output Isoquant

One useful method for estimating any isoquant is the order-m estimation procedure (Daraio and Simar 2005).

The output distance function DO(y, x), defined in (3) is expressed relative to the output set P (x) and the

basic idea in the order-m procedure is to regard this output set P (x) as the support of a conditional density

function

P (x) =
©
y : FY |X(y|x) > 0

ª
The corresponding support for the joint input output density HX,Y (x, y) is the production possibility set T ,

i.e.

T = {(x, y) : HX,Y (x, y) > 0} ,

HX,Y (x, y) = Pr(Y ≥ y,X ≤ x) = Pr(Y ≥ y|X ≤ x) Pr (X ≤ x)

= FY |X(y|x)SX(x),

where

SX(x) = Pr(X ≤ x).
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For a fixed level of input xo let Y1, . . . , Ym be m i.i.d. random output vectors generated from FY |X(.|xo), i.e.

all output vectors Yi, i = 1, . . . ,m are random variables that can be produced with xo with a strict positive

probability. Assuming selective (local) convexity of the output sets, the random output set of order-m for

units consuming xo, PC
m(xo) is defined as:

PC
m(xo) = Conv [{y|y ≤ Yi, i = 1, . . . ,m}] (5)

The locally convex order-m output efficiency θLCm (x, y) can be defined as (Daraio and Simar 2005):

θLCm (x, y) = EY |X

h
(eθLCm (x, y) |X ≤ x

i

where eθLCm (x, y) = sup
©
θ|θy ∈ PC

m(x)
ª

To obtain the estimator bθLCm (x, y) = bEY |X

h
(eθLCm (x, y) |X ≤ x

i
based on a sample of n observations we plug in the empirical version of FY |X(.|xo) as

bFY |X,n(y|x) = Pn
i=1 1(, Yi ≥ y,Xi ≤ x)Pn

i=1 1(Xi ≤ x)
,

where 1() is the indicator function. bθLCm (x, y) can be approximated by a Monte-Carlo procedure: Sample m

observations Y1,b, . . . , Ym,b conditional on input being less than xo = 1 with replacement. For each of the n

observations find the inverse output distance function value eθLC,bm (1, Yl) relative to an output set

Conv [{y|y ≤ Yi,b, i = 1, . . . ,m}] .

Redo this estimation b = 1, . . . , B and take the average of the obtained scores as the estimator, i.e.bθLCm (1, Yl) ≈ B−1
P

b
eθLC,bm (1, Yl). From these scores we obtain an estimated input set bPLC

m (1) as

bPLC
m (1) =

³
Conv

hbθLCm (1, Y1)× Y1, . . . ,bθLCm (1, Yn)× Yn

i
−Rp+

´
∩ Rp+. (6)

A simplification of the order-m estimator is the conditional estimator of the base isoquant, which avoids

the replications by choosing m = n.

In the application presented in section 6, we use this conditional estimator instead of the order-m estima-
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tor. The base isoquant can be estimated using this conditional model solving the following linear programs

bθLCC (Xbase, Yl) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max θ − ε (1, . . . , 1) s

s.t. θYl −
Pn

j=1 λjYj + s = 0Pn
j=1 λj = 1

λj = 0 if Xj > Xbase ∀j

λ ∈ Rn+, s ∈ R
p
+

(7)

l = 1, ..., n, where ε is a non-Archimedian, Xbase = 1 in this section and where the estimator bPLC
C (1) of the

output set is derived as

bPLC
C (1) =

³
Conv

hbθLCC (1, Y1)× Y1, . . . ,bθLCC (1, Yn)× Yn

i
−Rp+

´
∩ Rp+. (8)

A related model appears in the efficiency literature to control for exogenous inputs (Ruggiero 1996),

selective convexity (Podinovski 2005) and as the condition estimator (Daraio and Simar 2005). In this

formulation, units that are not observed consuming at most the base amount (in this case, one) are not

allowed in the solution space. Hence, we simply envelop all output vectors with observed input at most

equal to one. Notably, we replace the standard assumption of convexity with selective output convexity of

the output sets:

Axiom 7 Selective output convexity: If (X 0, Y 0) ∈ T, (X 00, Y 00) ∈ T,X 00 < X 0 ⇒ λ (X 0, Y 0)+(1− λ) (X 0, Y 00) ∈

T, λ ∈ [0, 1]

Our primary reason for using the conditional model is not to estimate efficiencies but to exploit homo-

theticity to aggregate multiple outputs into a one-dimensional output index. Hence, we estimate each output

isoquant using the conditional estimator and choose the "best" isoquant that has good coverage in the sense

that i) we want as many observations playing an active role of spanning the frontier, ii) we want the cone

spanned by these observation in output space to be as large as possible and iii) we want the observations to

be spread out across the cone as uniformly as possible. After choosing the output isoquant that best meets

these desirable criteria, we estimate the output distance of each observation to this isoquant as an index of

aggregated output.

To ease the presentation of the proposed methodology, we chose the unit output isoquant as the base

in our discussion above. We now provide guidelines for how to choose the input level with the most useful

information. Using the conditional estimator relative to a given input level x we only include output vectors

from observations with an input level at most equal to this x. We would like to have as many observations as
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possible available for spanning the isoquant, which tends to suggest a high input level. However, observations

consuming a large amount of input may not provide any additional information. Two relevant criteria for

selecting an isoquant could be i) many observed points on or just below the isoquant and ii) the points are

spread out evenly along the full isoquants. If we knew the positions and the shape of the true isoquants we

would look for the "best" output isoquants according to these criteria. Unfortunately, we do not know the

locations and the shape of the true isoquants. Hence, we have to rely on an estimator, and in this case we

will use the conditional estimator defined above. For each observed input level Xj , j = 1, . . . , n, we use the

conditional estimators bθLCC (Xj , Yl) , l = 1, . . . , n which provides us with the estimators bPLC
C (Xj), j = 1, . . . , n

of all n output sets corresponding to all n inputs levels. Finally we choose as base output isoquant the specific

input level which performs reasonably well according to the following three criteria:

1. A distribution of the angle coordinates of the observed data points on the conditional piecewise linear

estimator of the isoquant, which mimics the uniform distribution on the empirical support of the angle

coordinates for the whole data set. As a measure of the amount of deviation of the empirical distribution

from the uniform distribution we suggest the volume between the two distribution functions.

2. A large number of observed data points is located on the conditional piecewise linear estimator of the

output isoquant.

3. As many as possible of all the data points are radially projected to the envelopment of the points on

the frontier, i.e. are located in output space within the cone spanned by the points that spans the

output isoquant.

5 An estimator of a piecewise linear S-shaped frontier and the

inflection point.

Our estimate of aggregate output allows us to analyze an estimator of the S-shaped technology in the single

(aggregate) output single input case. Let the true production possibility set (PPS) be denoted TS , and

assume that the boundary of TS is S-shaped in the sense that we can divide the input axis into two parts

[0, x∗] and [x∗,∞) where the production function is convex (concave) on the first (second) interval. The

marginal product is monotonically non-decreasing in [0, x∗] and monotonically non-increasing in [x∗,∞). As

discussed in the introduction we know that the convex hull estimator bTBCC (Banker et al. 1984) of the PPS

is too large below x∗, but we also know that for input and output above the inflection point x∗ this estimator

works well, because of the true concave shape of the production function. Hence, we design a procedure
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that remove or "dig out" the part of the estimator bTBCC , that violates the S-shape. We focus on a certain

convex hull of observed data point that satisfies the following:

• only points below (and on) the inflection point are part of the convex hull, i.e. points that are supposed

to reflect the convex IRS part of the technology

• no point is located above the frontier (or equivalently, no points are located in the interior of this hull)

Figure 1 illustrates this idea using 5 input output observations generated from an "S-shaped" data

generating process (DGP). Observations, A,D and E are BCC-efficient and observationD is most productive

scale size (mpss). In this small illustrative example we use the mpss as an estimator of the inflection point3.

In other words we assume that the production function is convex up to data point D and concave to the

right of this point. The basic idea behind the digging approach is to determine a subset of all FDH-efficient

DMUs "below" mpss which determines a convex hull bTDig, where none of these DMUs belongs to the interior

of this hull. An estimator bTSof the PPS with an S-shape with an efficient boundary being piecewise linear

is now available as bTBCC\bTDig ≡ bTS , i.e. the convex hull BCC estimator of the PPS minus the convex hullbTDig. In Figure 1 the estimated bTBCC is the convex hull of observations A,D,E set added to R+ × R−

(strong input and output disposability). bTS is estimated as bTBCC\bTDig, where bTDig is the convex hull of

the observations A,B,C and D.

Figure 1. The S-shaped frontier.
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Unfortunately, the determination of bTDig is not unique. Examples of non-uniqueness are provided in

(Olesen and Ruggiero 2012), and a more general estimation procedure is suggested. Specifically, it is

suggested to choose that specific solution to the piecewise linear S-shape that maximizes the number of

FDH-efficient points located on the frontier.

6 Application to US West Coast Groundfish production.

We now turn to an application of the proposed estimation of a possibly S-shaped production relationship the

West Coast Groundfish production 2004-2007. One main focus for our analysis is: Can we find indications

of a purely increasing return to scale segment of the production of harvest of fish? Our estimation procedure

relies on a maintained hypothesis of an output homothetic production. We avoid any specific function form

of the production relation but using a non-parametric estimation procedure implies that we need many

observations, especially is we want to control for many exogenous factors.

Performance measurement of West Coast groundfish production is complicated by the fact that it is a

regulated industry. The landings limits vary in different regions and the fleet deployed includes both large

and small vessels. This of course questions a comparison of the performance of vessels of different sizes

of vessels of equal size harvesting in areas with different limits. One way to approach these problems is

to subdivide the sample into smaller groups of more homogeneous sub-fleets with regard to the quasi-fixed

input vessel-size and the West Coast areas targeted for harvest. However, it is well know that subdividing

the sample worsen the impact of the curse of dimensionality making it difficult to get accurate estimation

results. It is also well known that non-parametric estimation procedures as the ones used in this study is

particularly sensitive to the curse of dimensionality. Without a priory imposed structure we have to extract

structure from data which implies the need for large data sets.

In this study data allows us to specify a model with one variable input (days at sea), one quasi-fixed input

(vessel size) and then at least four different outputs (types of catch). We will however in this paper focus on

a simplified model where we partly ignore the quasi fixed input vessel size and we will use two aggregated

outputs. Furthermore, we use only data from California vessels fishing south of Humboldt Bay, where the

landings limits are the same for each vessel. A simple approach to control for the quasi-fixed input would

be to expand model (7) with the following additional constants:

λj = 0 if X
quasi-fixed
j > Xquasi-fixed

base ,∀j

In other words, for each estimated output isoquant at input level Xbase discard the j0th observations if
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Xj > Xbase or X
quasi-fixed
j > Xquasi-fixed

base . Preliminary sensitivity results indicate that the isoquants with

good coverage are unaffected by this additional control for the quasi-fixed input.

The application of the model is based on a data set with catch records from fishery in the Pacific Ocean

during the period 2004-2007. The entire catch record for each trip from each vessels is used. Primarily,

based on the condition of the fishery the catch is aggregated into the following 4 outputs,

i) the catch in lbs. of dover sole, sablefish and thoryhead rockfish (generally encountered at depths greater

than 200 fathoms),

ii) the catch in lbs. of a nearshore mix species aggregate (mainly petrale sole, rex sole, sanddabs and

other flatfish),

iii) the catch in lbs. of various rockfish species which are harvested mainly along the continental shelf at

depths between 75 and 150 fathoms, and finally

iv) the catch in lbs. of California halibut which is harvested in shallow water less than 75 fathoms.

We have chosen to define a DMU as a vessel in a specific year. Hence, we sum the catch in these four

categories and the variable input "days at sea" for fixed vessel for each of the four years. The total data

set comprises 192 vessel-year combinations. We have removed five outlier observations which brings us to a

final sample size of 187.

To facilitate a geometric presentation of the aggregation procedure we aggregate i) and iii) by simply

adding the catch in lbs. in these two categories. The same procedure is used to aggregate ii) and iv).

Using the guidelines from Section 4 for how to choose the input level with the most useful information

we will now use the conditional estimator relative to a given input level x and only include output vectors

from observations with an input level below or equal to this x. We would like to have as many observations

as possible available for spanning the isoquant. We look for a specific isoquant (a x level) which performs

well on all the criteria outlined in Section 4.

We sort the data on the variable input "days at sea" and estimate the conditional model (7) for each

of the 187 input levels; the solution space for each estimated isoquant is conditioned such that only DMUs

with inputs less than or equal to the i’th DMUs input, i = 1, . . . , 187 are included. We thus obtain 187

output oriented scores for each isoquant. If the output oriented score has additional slack in any of the

output dimensions the score is assigned the value "missing". Based on the these results, we identify for each

potential base isoquant only those points that span the conditional isoquants ( i.e. only observations with

output oriented score equal to one with no additional slack are included). For this application, we consider

three criteria for choosing our base isoquant.

Firstly, we are looking for the particular isoquant with as many observation on the frontier as possible.

Secondly, focussing on the points spanning the isoquant we search for sets of points with an empirical
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distribution of the angles as close as possible to a uniform distribution. Thirdly, we want the spanning

points to span as large a cone as possible in output space compared to the cone spanned by the full sample

of data points.

Figure 2 illustrates the first criterion. On the horizontal axis we have the 187 different estimators of the

output isoquants. On the vertical axis we measure the number of data points on or close to the estimated

frontier. The red curve includes the number of points with an output oriented score in the band [1,1.001].

Isoquant 60 seems to be performing well on this criterion. Figure 3 illustrates the second criterion. On the

vertical axis we measure the deviation of the output mix from the uniform distribution. For a description

of the exact measure of deviation from the uniform distribution we refer the reader to section 3 in (Olesen

and Ruggiero 2012). Finally, Figure 4 illustrates the third criterion, where for each of the 187 estimated

isoquants we have counted the number of sample points being projected to the envelopment of the points

spanning the frontier, but without the presence of slacks. In other words we have counted the number of

observation being in output space inside the cone spanned by the output vectors spanning each of the 187

estimators of the isoquant. Again we see that isoquant 60 is a promising candidate, but the isoquants 102-115

do seem promising too, especially if we expand the analysis by replacing the simple conditional estimator

with the more complicated order m estimator that can take advantage of the fact, that we have additional

observations present close to the envelopment.

50 100 150

2

4

6

8

10
spa g Us

Figure 2: The 1. criterion: The number of data points located on (blue) or on or close below (red) the

estimated frontier.
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Figure 3: The 2. criterion. The deviation of output mix from the uniform distribution.
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Figure 4. The 3. criterion: The number of sample points projected to the estimator of the isoquant

(without slacks).

Taken together, we are looking for the isoquants spanned by many of points that uniformly span the

isoquant. Several isoquants perform well on all criteria; for our analysis, we chose isoquant 60 as our base

isoquant.

The inverse of the output oriented efficiency scores relative to isoquant 60 are used as indexes of aggregated

output. Initiating the estimation of the inflection point and the S-shaped piecewise linear production function

(one input, one aggregated output) we first remove the 83 observations with positive slacks present in the

estimation of the aggregate output index and 88 observations that are FDH inefficient. That leaves us with
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a data set of 18 observations of which 8 (10) are above (on or below) most productive scale size (mpss). We

estimate the BCC efficiency scores based on the sample of observations from sample point 10 to 18 since

this concave part of the production function is unaffected of the exact choice of inflection point. Scores of

one of course indicate observations that contribute to the spanning of this concave part of the frontier. We

remove 5 of the 9 points below mpss because these points turn out to be in conflict with the requirement

that the marginal product along each of the facets making up the piecewise linear estimator moving from

origin to mpss must be monotonic increasing. Finally, we add the origin as a feasible production plan. This

is illustrated in Figure 5d, where the origin and the 5 remaining points are numbered 1, . . . , 6.

A general approach that provides a piecewise linear estimator of the S-shaped technology using the

inverted convex hull that maximizes the number of FDH efficient points on the S-shaped frontier, i.e that

maximizes the number of "S-shaped efficient" points is presented in model (24) in (Olesen and Ruggiero 2012).

An integral part of this procedure is an estimation of the inflection point; we seek as an inflection point on

or below mpss a FDH efficient observation that allows for an estimated S-shaped frontier with a maximum

number of FDH efficient points on the frontier. Testing a given point as a candidate for the inflection point

involves several conditions: i) the marginal products along the facets from the origin to the inflection point

must be increasing, ii) the marginal products must be non-increasing on facets above the inflection point

and iii) all the points have to be on or below the frontier.

The general model (24) in (Olesen and Ruggiero 2012) is estimating a convex shape as a graph through

a subset of the FDH efficient points starting at (0, 0) and ending at the estimator of the inflection point.

This convex shape is constructed as a graph in a network going through a subset of these points and leaving

no points on the wrong side of the graph. However with the present data set the solution to the S shape is

quite obvious which means that we do not need this complicated procedure. Looking at Figure 5d only the

point labeled "5" is feasible as the inflection point.

In general, without an obvious candidate for the inflection point, we would have to get the solutions

corresponding to the inflection point located at point "1", "2", "3","4" and "5". Hence, formally we would

have to go through the following steps for i ∈ {1, . . . , 5}:

1. The BCC model is solved including only points above point "6 − i”. We count the number of points

on the frontier and estimate the termination marginal product of the facet from point "6− i" to point

"6− i+ 1".

2. Focusing on "6−i" as the candidate for the inflection point we solve (24) in (Olesen and Ruggiero 2012)

(including the sequence of cuts) to determine a sequence of binary variables indicating a path through

a number of points below point "6− i" starting at the origin and ending at point "6− i" and with a
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monotone non decreasing marginal product along the path and no points above the path. The optimal

solution (assuming that one exists) will provide the count of points on this convex part of the frontier.

3. In addition we require that the marginal product on the facet from point "6− i− 1" to point "6− i"

is greater than or equal to the termination marginal product estimated in step 1.

4. Finally, we add the counts of points on the frontier from step 1 and step 2.

The discussion above is illustrated in Figure 5a,b,c,d. Figure 5a illustrates the total sample of data

points with non-missing output oriented efficiency scores relative to output isoquant 60. The final estimated

S-shaped frontier solution is indicated in this figure as well as a piecewise linear non-convex shape. The

estimation of this S-shaped frontier requires the following step: First and foremost we delete all FDH

inefficient observations which leaves us with the data points in Figure 5b. Clearly, any FDH inefficient DMU

can not contribute to the spanning of the S-shaped frontier. Second we determine the most productive

scale size (mpss). The subset of FDH-efficient point on and above the mpss will be enveloped using the

traditional convex hull estimator used in the BCC-DEA model. Thirdly, to estimate the part of the S-shape

on and below mpss we focus on the subsample of FDH-efficient points shown in Figure 5c. We impose

the requirement that the marginal product along the facets must be monotonically increasing up to mpss.

Hence of the 10 points in Figure 5c we delete the 2th, the 6th,the 7th, the 8th and the 9th observations.

These 5 observations can not be on the frontier if we insist that the marginal product along facets must be

monotonically increasing. Finally, we are left with 5 observations and the origin as the set of points to be

used in the procedure for estimating the best estimator of the inflection point. However, as noticed above in

this specific case it is evident that observation 5 in Figure 5d is the only feasible candidate for the inflection

point. If we try to find a solution insisting that e.g. point 4 is the inflection point then no feasible solution

exist (if we use a facet spanned from point 4 to point 6 then point 5 is on the wrong side of the frontier).

The final S-shape solution seems to indicate an increasing returns to scale segment from the origin up to

approximately 20 days at sea.
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Figure 5. Graphical illustrations of the construction of the S-shaped input consumption function

7 Conclusion and further research

A maintained hypothesis of convexity in input-output space is often used in DEA estimations of efficiency

scores. However, convexity is not consistent with standard microeconomic production theory that posits an

S-shape for the production frontier. In a recent paper, (Olesen and Ruggiero 2012) propose an approach that

allows for an estimation of efficiency from an S-shaped technology for the multiple inputs and one output

case. The approach relies on an assumption of input homotheticity for the case of one output and multiple

inputs. This assumption has allowed us to split the estimation procedure into two parts, i) an aggregation

procedure based on the structure of input homotheticity, and ii) a joint estimation of the inflection point

and a piecewise linear S-shaped structure for one aggregated input and one output.

The illustrative application in this paper is based on catch records with multiple output, one variable

input and one quasi fixed input. We have chosen in this paper not to implement a full multiple input

multiple output model. The approach suggested in (Olesen and Ruggiero 2012) assumes one output and
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multiple inputs with input homotheticity. It is straight forward to change focus to one input multiple

outputs maintaining output homotheticity, which is the strategy chosen in this paper. Notice however, that

maintaining input and output homotheticity with multiple inputs and outputs requires a more complicated

estimation procedure of the isoquants because we simultaneously have to estimate both a base input and a

base output isoquant.

The illustrative application presented in this paper is based on a data set with catch records from fishery in

the pacific ocean of the US West Coast groundfish production for the period 2004-2007. We have aggregated

outputs into two different outputs and used one variable input. Hence we estimate the S-shaped production

relation based on an assumption of output homotheticity which allows us to aggregate the outputs into an

output index.

Taking advantage of the reduced dimensionality (one aggregated output and one input) we have used the

model proposed in (Olesen and Ruggiero 2012) to estimate a piecewise linear S-shaped frontier. In other

words, we have assumed that the boundary of the true PPS is S-shaped in the sense that we can divide the

input axis into two parts, where the frontier is convex (concave) on the first (second) part. Consequently, the

convex hull estimator is too large and we have used a "digging approach" where we remove the part of the

PPS that violates this S-shape. This digging approach is formulated as a joint estimation of the inflection

point and the convex part of the frontier from the origin to the inflection point.

In Section 6 we have used this approach to analyze and estimate scale characteristics of the US West

Coast groundfish production. One main focus for our analysis is: Can we find indications of a purely

increasing return to scale segment of the production of harvest of fish? Our estimation procedure rely on

a maintained hypothesis of an output homothetic production. The empirical analysis shows that only very

modest increasing returns seems to exists. With "days at sea" in the interval [1,20] we do see increasing

returns to scale. With "days at sea" above 30 days decreasing returns emerge, and becomes severe especially

above 60 days.

As an estimation procedure for the base output isoquants we propose in this study, assuming selective

output convexity, the use of a simplified order-m estimation procedure. An important extension of the

analysis presented here would be to use a full order-m estimation procedure and allow more than two

outputs.

The approach used in this paper has two apparent shortcomings. First and foremost we have assumed

output homotheticity which may or may not be a reasonable assumption. An important extension of the

analysis presented here is to allow at a less restrictive output structure. Secondly, only one variable input

is used, although preliminary sensistivity results seems to indicate that controlling for the quasi-fixed input:

vessel size will not alter the shape of the estimated base isoquant. An important theoretical extension would
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be to allow for a full multiple input and multiple output analysis based on an assumption of joint input and

output homotheticity.
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Endnotes

1. Observe that the law is satisfied for movements along increasing returns to scale facets, since average

productivity in this case increases with marginal productivity unaffected.

2. See also (Ruggiero 1996) and (Podinovski 2005).

3. In (Olesen and Ruggiero 2012) we propose a more general estimator of the inflection point.
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Abstract 
 
 
The environmental movement of the late 1960s coincided with interest in modeling the 
consequences of environmental regulation on economic activity.  In order to avoid problems 
associated with using survey data of the cost of inputs assigned to pollution abatement, modeling 
the joint production of good and bad output production has emerged as an alternative strategy for 
determining the cost and productivity consequences of pollution abatement. After a brief survey 
of early research on the joint production of good and bad outputs, the paper focuses on the 
evolution of data envelopment models based on the environmental technology proposed by Färe 
and Grosskopf (1983). After surveying important changes in the specification of the production 
technology and selected applications, the paper concludes by highlighting challenges confronting 
this strategy for assessing the effect of pollution abatement.
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I. Introduction 
 

The environmental movement of the late 1960s coincided with interest in modeling the 

consequences of environmental regulation on economic activity.  The growing interest in 

implementing regulations to restrict bad outputs (i.e., emissions of pollutants) associated with 

producing and consuming good outputs (i.e., marketed desirable goods and services) led to 

concerns about the effect of these regulations on the production of the marketed good outputs. 1,2  

This concern developed because for a fixed technology and input vector, reductions in emissions 

are achieved at the cost of reduced production of marketed goods and services.  As a result, most 

early studies of the productivity, technical change, and technical efficiency consequences of 

pollution abatement focused on the good outputs of production. Over time, several pollution 

abatement strategies for reducing bad output production emerged. 

The first abatement strategy available to a decision making unit (DMU) involves simply 

reducing good output production.3   If a producer is restricted to a single process (e.g., a Leontief 

fixed coefficient technology), the only option for reducing bad output production is a 

proportional contraction of good and bad outputs along the process ray.  Due to the lack of 

                                                 
1 Throughout this study, “good” output refers to the desirable marketed good produced by a 
decision making unit (DMU), while “bad” output refers to the undesirable byproducts (i.e., 
emissions of a pollutant) of good output production.   

2 While Stone (1972, p. 412) referred to “Goods” and “Evils,” “desirable” and “undesirable” 
outputs or “goods” and “bads” emerged as the preferred terminology for discussing marketed 
outputs and their undesirable by-products. 
 
3 Pollution abatement does not eliminate the undesirable byproduct of good output production.  
Instead, abatement activities transform the byproduct from - for example - one media (air) to 
another media (solid waste) where it constitutes a reduced threat to human health and the 
environment. 
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flexibility, this strategy yields the highest opportunity cost (i.e., foregone production of the good 

output) of pollution abatement. 

The second pollution abatement strategy involves reassigning inputs from producing 

good outputs to pollution abatement. This strategy has two subcategories. First, end-of-pipe 

(EOP) abatement processes require a separate technology to be installed on a pipe or smokestack 

(e.g., a flue gas desulfurization system) prior to the release of the bad output.  The second 

subcategory of reassigning inputs is a change-in process (CIP) strategy in which abatement 

activities are integrated into the production process.4 

  Because pollution abatement reallocates inputs from producing marketed goods and 

services to activities that produce outputs without prices (i.e., reduced levels of emissions), there 

is likely to be a decline in the production of marketed goods and services used to satisfy 

household consumption.  While a short-run (i.e., fixed technology and fixed input vector) 

analysis finds that pollution abatement results in a decline in the material living standard of a 

society, pollution abatement positively affects its standard of living by reducing bad output 

production which improves its environmental quality.   

The third pollution abatement strategy requires improving the quality of inputs. For 

example, if an electric power plant wants to reduce SO2 emissions, it can switch from high-sulfur 

to low-sulfur coal (i.e., improving the fuel quality). However, low-sulfur coal has lower heat 

content (i.e., fewer BTUs per ton) than high-sulfur coal.  Because the switch to low- sulfur coal 

effectively reduces fuel inputs (i.e., in BTUs), the opportunity cost of reducing SO2 emissions is 

                                                 
4 A major problem associated with the introduction of CIP activities is determining which inputs 
in an integrated production process are assigned to pollution abatement. 
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the reduced level of good output production (i.e., electricity) resulting from the decline in the 

heat content of the fuel.  

While few dispute the benefits that environmental regulations provide society in the form 

of improved environmental quality and the resulting improvement in the quality of life, concerns 

remain about how pollution abatement affects the economic viability of firms, industries, and 

nations.  There are two major concerns about costs of pollution abatement. First, there are 

concerns about whether the regulations are optimal in the sense that marginal benefits equal 

marginal costs.  However, most empirical assessments of the welfare effects of environmental 

regulations rely not on incremental (i.e., marginal) costs and benefits, but on the total costs and 

benefits of a regulation.  Hence, regulations pass the benefit-cost test when total benefits exceed 

total costs. 

A second concern about the costs of environmental regulations is their impact on 

competitiveness (see Pasurka 2008 for a recent survey).  The hypothesis is that imposing 

regulations results in higher production costs and declining the competitiveness of the DMUs 

that are subject to the regulations. 

While substantial resources have been devoted to the development of techniques to assess 

the benefits of environmental regulations, fewer resources have been devoted to models that 

calculate the opportunity costs of regulations.  While early efforts to assess the cost effects of 

environmental regulations often relied on engineering models, in later years many studies used 

data from surveys that collected information on the cost of inputs assigned to pollution 

abatement (see Pasurka 2008).  

Data from surveys of pollution abatement costs constitute the basis of “assigned input” 

models. These models investigate the association between the cost of inputs assigned to pollution 
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abatement and productivity measures focused solely on good output production. These models 

require information on the production of good outputs, the inputs assigned to the production of 

the good output, and inputs assigned to pollution abatement. However, they require no 

information on bad outputs. One version of the assigned input model is implemented in the 

following manner. Using only the inputs assigned to good output production, a production 

function is estimated. The parameters from this function are then used to calculate the good 

output production if inputs assigned to pollution abatement are made available for good output 

production. The difference in good output production represents the opportunity cost of pollution 

abatement.  For example, Aiken, et al. (2009) implemented the assigned input model using a  

data envelopment analysis (DEA) framework by employing information on the capital stock 

assigned to pollution abatement in manufacturing industries in Germany, Japan, the Netherlands, 

and the USA to investigate the effect of pollution abatement on changes in good output 

productivity.   

 While surveys of pollution abatement costs remain a popular strategy for identifying 

abatement costs, concerns have been expressed about the quality of information generated by 

these surveys.  Initially, EOP technologies were the preferred strategy for reducing bad outputs.  

Because EOP technologies are separate technologies, this simplifies the task of determining 

which input costs are assigned to pollution abatement.  Over time, producers shifted from EOP 

strategies to CIP strategies.  Because of the difficulty associated with determining the share of 

the cost of an integrated technology that represent  pollution abatement costs, estimates of 

pollution abatement costs for CIP technologies are more problematic.   

As a result of the increased use of CIP abatement technologies to reduce bad outputs, 

modeling a separate pollution abatement technology became an increasingly difficult task.  
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Because of the challenges associated with assigning inputs to either good output production or 

pollution abatement, there was an incentive to develop another framework for measuring the 

association between pollution abatement and productivity.  Instead of assigning inputs to good 

output production and pollution abatement, the alternative method involves modeling the joint 

production of good and bad output production by regulated and unregulated technologies.  We 

refer to these as “joint production” models.   As is the case for the assigned input model, joint 

production models view the reduced good output production associated with abatement activities 

as the opportunity cost of pollution abatement.  However, there are several advantages to 

estimating pollution abatement costs (PAC) by modeling the joint production of good and bad 

outputs.  One advantage is that it does not require information on which inputs employed by a 

DMU are assigned to pollution abatement, nor is it necessary to know the quantity of reduced 

bad output (i.e., abated emissions).  Instead, PAC is the value of the foregone good output 

production associated with reducing bad output production (i.e., the “output” of pollution 

abatement).   Another advantage of modeling the joint production is it avoids the difficulties 

associated with survey efforts to estimate the cost of abating pollution when CIP abatement 

techniques are installed. A third advantage is synergies that exist when  abating two or more 

pollutants are automatically captured by the joint output technology, while explicit pollution 

abatement functions require information about  synergies existing among different pollution 

abatement processes. 

While there was immediate interest among economists in employing models that use the 

cost of inputs assigned to pollution abatement, interest in modeling the joint production of good 

and bad outputs took longer to gain acceptance. Unlike Zhou, Ang, and Poh (2008a), who 

compiled the only existing survey of the characteristics of nonparametric DEA models with good 
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and bad outputs, this paper attempts to describe the evolution of the art of modeling good and 

bad outputs.  By focusing on differences in model specification, this paper bears a closer 

resemblance to the Tyteca (1996, 1997) surveys of strategies to measure the environmental 

performance of firms. However, this paper does not compare empirical results generated by 

different models (see Zhou, Ang, and Poh 2008b).  The remainder of this survey is organized in 

the following manner. Section II reviews pre-DEA non-parametric models of good and bad 

output production.  Section III reviews DEA non-parametric models of good and bad output 

production and selected applications beyond calculating technical efficiency, productivity 

change, and the opportunity costs of regulations.   Section IV outlines extensions of the joint 

production model, while Section V reviews parametric joint production models. Section VI 

surveys cost function models of good and bad output production, and Section VII outlines 

challenges confronting efforts to model the joint production good and bad outputs. 

 

II. Pre-DEA Non-parametric Models of Goods and Bads 

Ayres and Kneese (1969) and Leontief (1970) represent the initial efforts to incorporate 

bad output production and pollution abatement into a general equilibrium framework.5 

Subsequent research primarily used an input-output framework in which each sector (i.e., DMU) 

had a single process at its disposal. As a result, the sole strategies available to reduce bad output 

production were (1) reducing good output production by the sector or (2) assigning inputs to a 

pollution abatement sector whose output was reduced bad output production. Using a joint 

production input-output model, with a separate pollution abatement (i.e., “anti-pollution”) sector, 

                                                 
5 Ethridge (1973) developed a theoretical model of a firm producing good and bad outputs. 
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Lowe (1979) represents an early attempt to calculate the shadow price of reducing bad output 

production within a joint production model. 

An early attempt to model good and bad output production within an activity analysis 

framework is illustrated in Figure 1 (Kohn, 1975, p. 29-33).  Unlike input-output models, which 

assumed a single process for each sector, Kohn’s model accommodates multiple processes in 

which each process generates one good output (y) and one bad output (b) from a vector of inputs.  

In Figure 1, three processes (P1, P2, and P3) are available to the DMU.   Each process is 

represented by a ray from the origin and represents different combinations of good and bad 

outputs that can be produced by a given technology and input vector. A steeper ray (e.g., P1) 

represents a process that assigns relatively more inputs to pollution abatement, while a relatively 

flat ray (e.g., P2) represents a process with fewer inputs assigned to pollution abatement.  Once 

the technology and input vector is known, it is possible to determine the combination of good 

and bad outputs associated with a process (i.e., points d, e, f), and construct linear combinations 

of the different processes.6 For the case of one good and one bad output, the producer can use 

one or two processes to produce a variety of combinations of good and bad outputs. In Figure 1, 

process P1 can be used to produce the bundle represented by point S and process P2 can be used 

to produce bundle represented by point V.  Combining these output bundles yields point Z on the 

production frontier line segment de. Implementing this procedure for the three processes yields 

the production frontier 0def0.   

The activity analysis joint production framework would later be incorporated into 

computable general equilibrium (CGE) models.  Willett (1985) and Shortle and Willet (1987) 

                                                 
6 In Figures 1, 3-6, 8, and 10, lower case letters represent observations, while upper case letters 
are points generated by the models. 
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specified theoretical general equilibrium models using an activity analysis specification of the 

joint production technology to incorporate bad outputs into a CGE model.  Komen and Peerlings 

(2001) also used this approach to specify input-output vectors representing three technologies 

(two active and one latent), which represented the availability of different mixes of good and bad 

outputs in the dairy farming sector.  

Another variation of the joint production model used in CGE models assumes bad output 

production is a fixed proportion of good output production (see Smith and Espinosa, 1996, and 

Lee and Roland-Holst, 1997).  Because only one process is available to each polluting industry, 

the only abatement strategy is a proportional reduction in good and bad output production.   

 

III. DEA Non-parametric Modeling of the Joint Production of Goods and Bads  

A. Environmental Technology 

The early efforts to model the joint production of good and bad outputs failed to gain 

traction as a foundation for subsequent research. This changed when Färe, Grosskopf, and 

assorted co-authors proposed modeling the joint production of good and bad outputs within a 

data envelopment analysis (DEA) framework.7  All joint production models start with several 

premises. From there, the framework can be modified to address a variety of research questions.    

First, we specify the environmental technology.  This technology incorporates weak 

disposability of outputs and null-jointness.  The later concept tells us that producing good 

outputs requires producing bad outputs.   

                                                 
7 An alternative approach that has been proposed involves modeling emissions as “bad” inputs in 
the production process.  Koopmans (1951, p. 38, footnote 5) mentions the possibility of 
modeling undesirable byproducts as negative outputs (i.e., inputs). 
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Before proceeding, some notation must be introduced.  Inputs are denoted by x = (x1, ..., 

xN) N
 good outputs by y = (y1, ..., yM) M

 and bad or undesirable outputs by b= (b1, ..., bJ) 

J
 .   

We apply output sets to model the environmental technology, i.e., 

P(x) = {(y, b): x can produce (y, b)}, x N
    

For each input vector x, the output set P(x) is the combinations of good and bad outputs (y, b) 

that can be produced by that vector.  In order to model the opportunity cost of reducing the bad 

outputs (i.e., the quantity of good output that must be foregone), we impose the assumption that 

good and bad outputs (y, b) are together weakly disposable.8 This allows us to model the 

technology when bad outputs are regulated.    

This environmental technology must satisfy the following standard axioms: 

P.1. {0}   P(x) for all x N
  

P.2. P(x) is compact x N
  

P.3. P(x) P(x′) if x′ ≥ x 

These axioms tell us that inactivity is always possible (P.1.), that finite inputs can only produce 

finite outputs (P.2.), and that inputs are freely disposable (P.3.). 

In order to specify the environmental technology, the technology must also meet two 

environmental axioms. First, the weak disposability of outputs: 

P.4.W.   (y, b) P(x) and 0 ≤ θ ≤ 1 imply (θy, θb) P(x) 

                                                 
8 Weak disposability is the proportional reduction in all good and bad outputs.  Shephard (1970) 
introduced this concept. 
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Hence, if x can produce outputs (y, b), then it is feasible to proportionally reduce the outputs.   

This axiom can be contrasted with the usual strong disposability condition: 

P.4.S. (y,b) P(x) and (y′,b′) ≤ (y,b)  imply (y′,b′)   P(x) 

This condition allows for non-proportional reduction in both good and bad outputs.  In principle 

one can costlessly dispose of outputs.  While this may make sense for the good output, it does 

not for the bads since we assume the existence of environmental regulations.  If regulations do 

not exist, then bad outputs can be treated as being freely disposable. This represents the 

technology when the bad outputs are unregulated. 

The second environmental axiom is null-jointness or the by-product axiom. 

P.5. (y,b)   P(x) and b=0 imply y=0 

Here the bad outputs, b, are by-products of the good outputs, y.  This axiom tells us that if we 

produce good outputs then some bad outputs will also be produced.  In summation, “there is no 

fire without smoke.” 

We assume, for simplicity, that good outputs are freely disposable, i.e.,9 

P.6. (y,b) P(x) and y′ ≤ y  imply (y′,b) P(x) 

In summation, the environmental technology assumes good outputs are freely disposable and 

good and bad outputs are jointly weakly disposable.  We can illustrate the environmental 

technology using an output set P(x). 

The environmental technology illustrated in Figure 2 meets the two environmental 

axioms.  First, for any observed (y, b) in P(x) its proportional contraction (θy, θb) is also 

                                                 
9 When specifying the environmental technology, Färe and Grosskopf (1983) and Färe, 
Grosskopf, and Pasurka (1986) assumed the good and bad outputs were jointly weakly 
disposable. Färe et al. (1989) introduced the environmental technology that assumed the good 
output was freely disposable.  
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feasible, i.e., it belongs to P(x).  Second the only point in common between the good output (y-

axis) and the output set P(x) is the origin 0, i.e., b is a by-product of y, or y is null-joint with b. 

B. Technical Efficiency and Pollution Abatement Costs 

The environmental technology can be specified as either a non-parametric or parametric 

model. The non-parametric DEA models employ a piece-wise linear specification of the joint 

production technology composed of observations reflecting the actual behavior of DMUs.  This 

allows us to construct a piece-wise linear production frontier for a given technology and input 

vector.  Using a distance function, Färe and Grosskopf (1983) and Färe, Grosskopf, and Pasurka 

(1986) were the first to formally model the technical efficiency of DMUs that jointly produce 

good and bad outputs. In these papers, good and bad outputs are treated symmetrically. In other 

words, a DMU is credited for simultaneously expanding production of both its good and bad 

outputs.  In order to calculate the PAC, it is necessary to specify two technologies whose 

specification differs in their treatment of the disposability of the bad outputs.     

The first technology imposes weak disposability on good and bad outputs.  Under this 

assumption, the DMU may not freely dispose of its undesirable by-products (i.e., bad outputs).  

As a result, reducing its bad output production comes at the cost of reducing its good output 

production. Hence, the weak disposability technology can be viewed as the regulated technology. 

The second technology assumes bad outputs are freely disposable, i.e., a DMU is assumed to 

ignore the undesirable outputs that it produces. The free disposable technology can be viewed as 

the unregulated technology. 10  The difference in technical efficiency scores for the regulated and 

                                                 
10 Because it is likely that DMUs are regulated prior to the year(s) included in the sample used to 
construct the production frontier, the unregulated frontier can be thought of as the least-regulated 
frontier. 
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unregulated technologies yields the foregone good output (i.e., the opportunity cost) associated 

with reducing bad output production.  

These models evolved independently from the earlier activity analysis models, and 

closely resemble DEA models that impose weak disposability on inputs (i.e., allow for a 

backward bending isoquant). In fact, Färe and Grosskopf (1983) referred to the “congestion” of 

outputs when imposing weak disposability on the outputs.   

The unregulated and regulated technologies can be specified as distance functions, which 

can be solved as LP problems.    Because Färe, Grosskopf, and Pasurka (1983, 1986) assumed 

variable returns to scale (VRS), they needed to introduce an additional variable that is not present 

in equation (4). For DMU k′ in period t, the constant returns to scale weak disposability (i.e., 

regulated) technology is:11 
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where β is the measure of technical efficiency.  The LP problem calculates the maximal β by 

which production of all good and bad outputs can be expanded for a given technology and input 

vector. If outputs cannot be expanded (i.e., β=1), this indicates the observation is on the frontier 

(i.e., is technically efficient).  If the outputs can be expanded (i.e., β>1), this indicates the 

observation is inside the frontier (i.e., is technically inefficient).  If there is a single good output, 

the amount of forgone good output production due to technical inefficiency is (β-1)×yk′. 

                                                 
11 While it is possible to specify an input-based measure of efficiency, output-based efficiency 
specifications are used throughout this paper.   
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 The second technology assumes the good and bad outputs are freely disposable, i.e., a 

DMU is can costlessly dispose of its good and bad outputs. The free disposable technology or 

unregulated technology is modeled by converting the sign on the good output constraint and bad 

output constraint to “≥”.  For the free disposal technology, the LP program maximizes β*. If 

there is a single good output, the value of (β*-β)×yk′ represents  the total foregone good output 

production associated with pollution abatement by DMU k′.   

The regulated technology specified in equation (4) yields the regulated (0fcd0) 

production frontier depicted in Figure 3. The unregulated technology, which is specified by 

modifying the constraint on the bad output, yields the unregulated (0AcdE0) frontier in Figure 3. 

The technical efficiency of observation (y, b) is calculated relative to a point on segment fc of the 

regulated frontier.  The downward sloping line segment (cd) for both the unregulated and 

regulated frontiers is troublesome in that it allows a decision making unit to be on the frontier 

and increase good output production while  simultaneously decreasing bad output production.  

The counter-intuitive shadow price for the bad output associated with the downward sloping 

portion of the frontier would remain a source of concern in the coming years.  

Färe, Grosskopf, and Pasurka (1986, p. 183) viewed the opportunity cost of regulations as 

“indirect costs.” This led to some confusion when interpreting their results (Färe, Grosskopf, and 

Pasurka, 1986, p. 184): 

“Even though most of the current federal pollution control regulations had not become effective 
at that time, we found that lack of disposability ‘cost’ an average of roughly 16 million kilowatt-
hours in lost potential output for each plant in our sample. This is in addition to any direct 
outlays on pollution control equipment, for example, suggesting that simple outlay measures of 
the costs of pollution control understate the social cost of improving environmental quality. “ 
 
This confusion would disappear in subsequent papers.  
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Unlike Pittman (1981, 1983), who assumed an asymmetric relationship between good 

and bad outputs, a drawback of the distance function model is its symmetric treatment of good 

and bad outputs.  Färe et al. (1989) addressed this concern by specifying a hyperbolic function to 

model the joint production of good and bad output production.  The advantage of the hyperbolic 

model is that it allows good and bad outputs to be treated asymmetrically.  In other words, a 

DMU is credited for simultaneously expanding production good output and contracting of bad 

outputs.   This allows the calculation of an adjusted measure of technical efficiency.  Although 

the hyperbolic model calculates technical efficiency differently than the distance function, it 

calculates the opportunity cost of pollution abatement in the same manner as the distance 

function model proposed by Färe and Grosskopf (1983) and Färe, Grosskopf, and Pasurka 

(1986). 

The hyperbolic function (see Färe et al. 1989) is calculated as a solution to nonlinear 

programming (NLP) problem.12  For the regulated technology, we have for DMU k′ at t 
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(λ=1 indicates the observation is on the frontier, while λ>1 reveals the observation is inside the 

production frontier.  As was the case for the distance function, we model the unregulated 

                                                 
12 Boyd and McClelland (1999) show how the NLP problem can be converted into a LP problem, 
and argue that finding technical inefficiency when treating goods and bads asymmetrically is 
evidence of a potential “win-win” situation similar to the Porter hypothesis. Färe, Grosskopf, and 
Zaim (2002) show that a constant returns to scale hyperbolic function can be specified as a LP 
problem.  
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technology by converting the sign on the bad output constraint to “≥”. For the unregulated 

technology, the LP program maximizes λ*. Calculating the value of (λ* - λ)×y k′  yields  a 

measure of the total foregone good output production associated with pollution abatement by 

DMU k′.   

The constraints on the good and bad outputs yield the regulated and unregulated 

production frontiers depicted in Figure 4.  The change associated with the good output constraint 

for the regulated technology yields a new regulated frontier of 0fcdE0, while the unregulated 

frontier remains 0AcdE0.  The technical efficiency of observation (y, b) is calculated relative to a 

point on segment fc of the regulated frontier. As with Figure 3, the downward sloping line 

segment (cd) exists in Figure 4.   

Färe et al. (1989) proposed a second strategy for calculating the opportunity cost of 

reducing the bad output. While the regulated frontier is identical to that specified by equation (4), 

the constraint on the bad output in the unregulated frontier is eliminated. These constraints yield 

the regulated and unregulated production frontiers depicted in Figure 5.  The change associated 

with the bad output constraint for the unregulated technology results in a new unregulated 

production frontier of 0AGE0, while the regulated frontier remains 0fcdE0.  As with Figure 4, 

the downward sloping line segment (cd) remains for regulated frontier; however, the downward 

sloping portion of the frontier no longer exists for the unregulated technology. 

   While the hyperbolic function represents an important innovation, in the future it would 

be overshadowed by an alternative approach for modeling good and bad outputs asymmetrically 

– the directional distance function (see Luenberger 1995, and Chambers, Chung, and Färe 1996). 

C. Adjusted Productivity Change with Good and Bad Outputs 
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After Färe et al. (1989) introduced the asymmetric treatment of good and bad outputs 

using data from a single year, the next step in the evolution of modeling good and bad output 

production was extending the model to allow for shifts in the production frontier.  Chung, Färe, 

and Grosskopf (1997), which specified DEA directional distance functions to model the joint 

production of good and bad outputs, introduced a model that allowed for the possibility of shifts 

in the production frontier (i.e., technical change). The primary advantage of the directional 

distance function is that it possesses duality properties the hyperbolic function lacks.   By 

treating good and bad outputs asymmetrically, these models can specify a Malmquist-Luenberger 

productivity index that credits a DMU for simultaneously expanding production of both its good 

output and contracting its production of bad outputs. They also demonstrated how the adjusted 

productivity change can be decomposed into technical change and changes in efficiency. 

In order to calculate the adjusted productivity, four LP problems must be solved.  Two 

LP problems are solved in which all of the observations are from the same periods. As an 

example we have for DMU k′ at t 
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There are also two mixed period LP problems. These resemble (6), except that the time 

superscripts on the right-hand side of the constraints differ from the time superscripts on the left-

hand side of the constraints.  For example, in one of mixed-period LP problems, the output set 
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(i.e., the production possibilities frontier) is determined by all of the observations from period t. 

However, the DMU under evaluation--the DMU denoted k′, on the right-hand-side of the 

constraints is from period t+1. 

A computational problem that emerged with calculating productivity change and 

technical change was the imposition of weak disposability on the outputs resulted in the 

occurrence of infeasible LP problems for the mixed-period LP problems when employing 

contemporaneous frontiers.  A visual representation of an infeasible LP problem can be seen in 

Figure 6 which represents the case where an LP problem is unable to find a solution when using 

the period t technology (0fcdE0) to evaluate an observation from period t+1 (point h).      

The initial strategy employed to reduce the incidence of infeasible LP problems involved 

using multiple year “windows” of data as the reference technology (see Färe, Grosskopf, and 

Pasurka 2001). This strategy assumed the reference technology (i.e., the production frontier) 

consists of observations from a given year plus the previous two years. Using either a sequential 

technology or a minimum of two-year windows (i.e., the reference technology consists of 

observations from a given year plus the previous year) eliminates infeasible LP problems for the 

case consisting of the technology of period t+1 evaluating a DMU from period t. However, 

neither windows nor a sequential technology guarantee the elimination of infeasible LP problems 

for a mixed-period LP problem with the technology of period t being used to determine the 

efficiency of a DMU from period t+1. 

In addition to the multiplicative environmental directional distance function specified in 

equation (6), there is also an additive environmental directional distance function (see Färe, 

Grosskopf, and Pasurka 2007a). This version of the directional distance function is specified as: 
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When the good and bad outputs are treated asymmetrically, the direction vectors are assigned 

values of unity, i.e., gy = 1M, gb = 1J.  

While selecting an additive or multiplicative directional distance function does not affect 

the shape of the frontier, the additive environmental directional distance function model has the 

following advantages: (1) its results are easy to aggregate and (2) it provides a clear connection 

to the traditional production function. However, if gy  and gb are both non-zero then the results for 

the additive environmental directional distance function are affected by how the data are scaled, 

while results for the multiplicative models (see equation 6) are unaffected by data scaling.  

Therefore, caution must be exercised when interpreting the empirical results of the additive 

environmental directional distance function. 

  D. Traditional Productivity 

Some of the earliest reservations expressed about environmental regulations concerned 

the adverse effect of pollution abatement on measures of productivity that credit a DMU solely 

for expanding good output production. Studies addressing this issue traditionally rely on 

assigned input models. In order to modify the joint production model to address this issue, Färe, 

Grosskopf, and Pasurka (2007a) specified the environmental production function, which they 

demonstrated is a special case of the environmental directional distance function.  When 
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employing an environmental production function, the DMU is credited solely for expanding 

good output production. This can be written as the following LP problem: 
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Figure 7 shows the environmental production function. For a given technology, input vector (x0), 

and level of the bad output (b0), F(x0, b0) is the maximum feasible good output production. This 

corresponds to point f on the production frontier. 

Färe, Grosskopf, and Pasurka (2007b) used the environmental production function to 

model the joint production of good and bad outputs in which the DMU is credited solely for 

expanding good output production.  The difference in good output production found by the 

regulated and unregulated production frontiers allows us to calculate the effect of pollution 

abatement on productivity growth.  As was the case for Chung, Färe, and Grosskopf (1997) and 

Färe, Grosskopf, and Pasurka (2001), productivity change can be decomposed into technical 

change and changes in technical efficiency.  

Färe, Grosskopf, and Pasurka (2007b) represent the next stage in the specification of the 

production technology.  In this paper, infeasible LP problems are eliminated by following a two 

step procedure. First, they use 3-year windows of data as the reference technology.. Second, due 

to the inability to eliminate the occurrence of infeasible LP problems for the mixed-period LP 

problem with the technology of period t evaluating DMUs from period t+1, this mixed-period LP 
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problem was not used to calculate productivity change and technical change. The drawback to 

this strategy is the arbitrary exclusion of period t as a reference technology.   

E. Tradable Permits 

In addition to using joint production models to calculate the opportunity costs and 

productivity consequences of pollution abatement, they can also be employed to analyze issues 

associated with tradable permits of bad outputs.  For example, Brännlund et al. (1998) used the 

joint production model to forecast the potential increase in profits if a tradable permit system was 

implemented for the bad outputs of the Swedish pulp and paper industry.  Recently, Färe, 

Grosskopf, and Pasurka (2012a) modified this framework to investigate unrealized gains from 

trade that exist in tradable permit system for SO2 emissions of power plants in the United States 

for 1995 to 2005. 

Färe, Grosskopf, and Pasurka (2012a) represent the most recent advance in the 

specification of the production technology. The LP problem specified the good and bad output 

constraints for the regulated technology as: 
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The change in the bad output constraint yields a P(x) that is not bounded. These constraints yield 

the regulated production frontiers depicted in Figure 8. The change associated with the bad 

output constraint for the regulated technology results in a new regulated production frontier of 
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0fcGE0, while the unregulated frontier remains 0AGE0.13  The technical efficiency of 

observation (y, b) is calculated relative to the segment fc of the regulated frontier..  With this 

most recent advance, the downward sloping line segment of the regulated technology is 

eliminated.  Intuitively, the revised constraint on the bad output restricts the shadow price of the 

bad output for the regulated frontier to be non-positive.  This improves the modeling good and 

bad outputs because the downward sloping portion of the frontier had been especially 

troublesome for interpreting the results of models that treated the good and bad output 

symmetrically or models that focused on expanding good outputs while holding bad outputs 

constant.  However, the correct interpretation of the downward sloping portion of the frontier 

remains unresolved. The definitive explanation for the existence of a positive sloped frontier 

remains a mystery.  For a perspective on interpreting the results generated by the downward 

sloping frontier, see Picazo-Tadeoa and Prior (2009). 

F. Change in Pollution Abatement Cost 

 We mentioned earlier the concern about the association between pollution abatement 

costs and competitiveness.  The traditional perspective emphasizes optimizing firms that 

confront trade-offs between producing marketed goods and environmental quality. While 

reducing emissions may improve the overall welfare of a nation, the traditional perspective 

argues that a unilateral increase in PAC results in some firms and industries becoming less 

competitive. For a polluting firm or industry that is producing on its production frontier, 

pollution abatement reduces both emissions and production of marketed goods as inputs are 

moved from production of marketed goods to pollution abatement. Hence, for a given 

                                                 
13  Färe, Grosskopf, and Pasurka (2012a) do not specify an unregulated technology. Hence, the 
unregulated frontier in Figure 8 is taken from Figure 5. 
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technology, pollution abatement is associated with declining productivity and increasing 

opportunity costs of reducing bad outputs.  If the model allows “induced innovation” from 

environmental regulations to occur, the change in the price (i.e., the opportunity cost) of bad 

outputs  relative to the price of the good output spurs R&D expenditures, which develop products 

and processes that reduce bad outputs while maintaining or increasing good output production. 

We have started to investigate the potential usefulness of joint production models to 

examine the role of technical change on the opportunity costs of pollution abatement.  Pasurka 

(2001) and Färe, Grosskopf, and Pasurka (2012b) employed joint production models to address 

this issue. The Färe, Grosskopf, and Pasurka (2012b) framework extends Pasurka (2001) by 

specifying both regulated and unregulated  frontiers in order to  decompose changes in the 

opportunity cost of pollution abatement into  (1) change in the scale of operation (i.e., changes in 

inputs), (2) technical change, and (3) changes in emission-intensity. 

While modifying the specification of the regulated technology in equation 9 was not 

intended to eliminate infeasible mixed-period LP problems, Färe, Grosskopf, and Pasurka 

(2012b) found no infeasible mix-period LP problems.  The decline in infeasible LP problems 

even occurs when employing contemporaneous frontiers for the mixed-period LP problem with 

the technology of period t evaluating DMUs from period t+1.  If these preliminary results are 

found in subsequent studies, it may be possible to use both mixed-period LP problems without 

windows.       

G. Changes in Bad Output Production 

While pollution abatement reduces good output production, its primary objective is to 

reduce bad output production.  As a result, there are continuing efforts to identify the relative 

importance of factors associated with changes in bad output production.  One approach involves 
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using econometric models to estimate an Environmental Kuznets Curve (EKC), which model the 

relationship between economic growth and bad output production.  Taskin and Zaim (2000), 

Zaim and Taskin (2000), and Färe, Grosskopf, and Zaim ( 2005) introduced the use of joint 

production DEA models to investigate the existence of an EKC.   

  In addition to the EKC model, both input-output models and index number models are 

used to decompose changes in bad output production by identifying the factors that affect 

changes in bad output production. Li and Chan (1998), which is discussed in Grosskopf (2003), 

extended the standard DEA productivity decomposition framework by decomposing changes in 

good output production into changes in technical efficiency, technical change, and changes in 

inputs.  Pasurka (2006) modified the Li and Chan framework to account for  changes in bad 

output production  associated with (1) changes in technical efficiency, (2) change in the scale of 

operation (i.e., changes in inputs), (3) technical change, and (4) changes in emission-intensity. 

IV. Extensions of the DEA joint production model 

A.  Environmental Performance Indexes 

An alternative measure of environmental performance, which requires only information 

on good and bad output production, is an Environmental Performance Index (EPI). The EPI 

calculates the inverse of the change in the emission-intensity ratio.  Färe, Grosskopf and 

Hernando-Sanchez (2004), and Färe, Grosskopf, and Pasurka (2006) implemented this index for 

the case with a single bad output in which changes in the good-bad output ratio over time is 

proposed as a measure of environmental performance.   In the most recent extension of the EPI, 

Färe, Grosskopf, and Pasurka (2010) specified an index that accommodates more than one bad 

output.  

 B. No data on PA inputs or bad outputs  
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In many instances both data on inputs assigned to pollution abatement and data on bad 

output production are unavailable.  For these cases, it is necessary to know when a new 

technology was installed or when a regulation was implemented.  If this information is available, 

it is possible to specify an alternative definition of the regulated and unregulated production 

technologies in order to calculate the effects of environmental regulations on technical efficiency 

in which only data on good output production are available.  For example, Färe, Grosskopf, and 

Pasurka (1989) compared changes in technical efficiency before and after the introduction of 

precipitators for a sample of electric power plants in the United States.   

C. Good and Bad Outputs in Network Models 

Both assigned input and joint production models treat the transformation of inputs into 

good and bad outputs as a black box. A network technology of sub-technologies must be 

introduced (see Färe, Grosskopf, and Pasurka, 2012c) to allow an investigation of the 

consequences of ignoring the transformation process.14  The network technology looks inside the 

black box, which consists of a set of sub-technologies or sub-processes.  These sub-technologies 

are connected in a network that forms the joint production frontier. For example, the network 

technology for a coal-fired power plant consists of two sub-technologies. The first sub-

technology produces electricity and bad outputs. The second sub-technology is an EOP 

abatement technology (e.g., a scrubber) in which the bad output produced by the first sub-

technology is an input. The output of the second sub-technology is the transformation of some of 

bad output into a form that society views as less undesirable. After treatment, the remaining bad 

output is emitted into the environment.  

                                                 
14 Hua and Bien (2008) present an alternative specification of a network model with good and 
bad outputs. 
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Processes inside the dashed box in Figure 9 are the subtechnologies inside the black box.  

Exogenous inputs (i.e., capital, labor, and fuel) - box A - are employed by the subtechnologies.  

The first subtechnology (box B) produces a good output ( C
B y + D

B y) and a bad output ( C
B b).15  The 

good output is consumed as an intermediate input ( C
B y) by the EOP pollution abatement 

subtechnology (box C) or as a final output ( D
B y).  Hence, the difference between the gross 

production of the good output and the good output consumed by the pollution abatement 

subtechnology yields good output production - the net good output production, exclusive of plant 

use (box D).  

Gross bad output production ( C
B b) reflects the level of bad output production after CIP 

abatement activities or no treatment at all.16  These bad outputs can be discharged from the plant 

or sent to the pollution abatement subtechnology for additional processing.  For the pollution 

abatement subtechnology, exogenous inputs ( C
A x ), intermediate inputs  ( C

B y ), and the gross 

production of the bad output ( C
B b) are inputs whose output is net bad output production ( E

C b), 

which is the bad output released by the DMU (box E).17  While both the assigned input and joint 

production models view the reduced good output production associated with abatement activities 

as the opportunity cost of pollution abatement, there has been no attempt to establish the 

theoretical relationship between these models.   The network model provides a theoretical 

framework that might permit a comparison of the assigned input and joint production models. 
                                                 
15 When discussing the inputs and outputs in Figure 9, the subscript represents the source box, 
while the superscript represents the destination box.  

16 The U.S. Department of Commerce (1996, p. 72) found 20.4 percent of air pollution abatement 
capital expenditures by electric power plants in 1994 were production process enhancements.  
 
17 For plants that do not undertake abatement activities, gross SO2 production equals net SO2 
production. 
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Recently, another variation of combining network models with bad outputs has been 

proposed.   tenRaa (1995) extended the traditional input-output framework with no bad output 

production to calculate macroeconomic technical inefficiency. Böhm and Luptáčik (2006) and  

Luptáčik and Böhm (2010) extended tenRaa’s framework to calculate technical inefficiency in 

the presence of a constraint on bad output production (i.e., emissions of air pollutants). In their 

model, inefficiency is determined by the extent to which it is possible to proportionally contact 

primary input (i.e., capital and labor) use while maintaining the original final demand vector or  

proportionally expanding the final demand vector with the original vector of primary inputs.  

Pasurka (2012) extends the Prieto and Zofío (2007) model by introducing bad outputs 

into an input-output activity analysis model. Unlike the tenRaa which can be implemented with a 

single input-output table, the Prieto and Zofio model requires multiple input-output tables. 

Directional distance functions are then used to calculate adjusted measures of productivity 

change, technical change, and changes in technical efficiency by crediting an economy for 

simultaneously expanding good outputs and contracting bad outputs. By allowing primary 

factors of production (i.e., labor and capital) to be mobile among sectors, plus using the 

intermediate inputs from the input-output table, this approach provides a more general 

equilibrium framework than the standard joint production model.      

V.  Parametric joint production models and their application 

A.  Shadow Prices of Bad Outputs 

While the non-parametric models specified in previous sections can calculate the total 

quantity of good output production foregone to reduce bad output production to a given level, the 

next stage in the evolution of the joint production model was calculating the shadow price (i.e., 

the marginal abatement cost) of reducing bad output production.  Rather than calculating the 
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distance between the unregulated and regulated frontiers, calculating the shadow price of bad 

outputs requires specifying a (regulated) technology that imposes weak disposability on the good 

and bad outputs and then determines the shadow price by calculating the slope of the production 

frontier.  Färe et al. (1993) specified a translog distance function (a parametric model), while 

Ball et al. (1994) employed a piece-wise linear DEA model to calculate the shadow price of 

reducing production of a bad output. Both models treat good and bad outputs symmetrically. 

Because the piece-wise linear models yield production frontiers that are not smooth, difficulties 

were encountered when calculating the shadow prices of some observations. As a result, the 

parametric approach for calculating shadow prices emerged as the dominant framework.  Färe et 

al. (1993) – and subsequent parametric models of goods and bad outputs – avoided the problem 

of a downward sloping production frontier, which yield counter-intuitive shadow prices of bad 

outputs, by imposing a constraint in the LP problem requiring the shadow prices of bad outputs 

to be non-positive.18  Figure 10 provides a simple example of how the shadow price of a bad 

output is calculated. An inefficient DMU (point c) is projected to a point on the production 

frontier (point H). The shadow price of the bad output for the DMU is determined by the slope of 

the frontier at point H. 

  Färe, et al. (2005) extended the shadow price framework by specifying a quadratic 

directional distance function instead of a translog distance function. Unlike the translog distance 

function that requires good and bad outputs be treated symmetrically, the quadratic directional 

distance function also allows the good and bad outputs to be treated asymmetrically.19 In 

                                                 
18  See Hetemäki (1996, pp. 64-65) for an example of a translog distance function with no 
constraint imposed on the shadow price of the bad outputs. 
 
19 The translog function cannot be used when specifying a directional distance function. 
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addition, bootstrapping was employed to add a stochastic perspective to the analysis.  Vardanyan 

and Noh (2006) investigated the effect of different directional vectors on shadow prices. Interest 

in the appropriate parametric functional form to employ when modeling good and bad outputs 

led Färe, Martins-Filho, and Vardanyan (2010) to investigate the relative strengths and 

weaknesses of the translog distance function and quadratic directional distance function.  While 

their work led them to favor using a quadratic directional distance function, one shortcoming of 

the quadratic function is that its direction vector is additive.  As a result, changes in the scaling of 

the data affect the parameters and results unless the direction vector is changed in a manner that 

offsets the change in the data.  

B. Additional Applications of Parametric Joint Production Models 

In addition to identifying the shadow prices of bad outputs, two applications of the 

parametric joint production models emerged.  First, Aiken and Pasurka (2001) demonstrated an 

alternative strategy for calculating adjusted changes in productivity in which the value of good 

output production is adjusted by subtracting the “value” of bad output production.  In their paper, 

the price of a bad output is determined by calculating its shadow price via a translog distance 

function (see Färe et al. 1993). With this approach, the value of good output production is 

reduced by the product of the shadow price of the bad output and the quantity of the bad output 

produced. 

Second, the parametric models can be used to determine the extent of substitutability 

among outputs. Färe, et al. (2005) employed the quadratic directional distance function to 

calculate output elasticities of transformation in order to investigate the extent of substitutability 

between electricity (the good output) and SO2 emissions (a bad output). Färe et al. (2012) 

extended Färe et al. (2005) to calculate output elasticities of transformation that determine the 
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extent of substitutability or complementary among undesirable by-products. These elasticities 

have the potential to be useful when analyzing the ancillary benefits (or co-benefits) of a 

regulation. For example, if two bad outputs are complements then regulations intended to reduce 

production of one bad output will result in reduced production of its complementary bad output. 

If they are substitutes, then reducing production of one bad output will increase production of the 

other bad output. The output elasticities of transformation generated by the quadratic directional 

distance function are subject to the same caveats as its shadow prices that were discussed in the 

previous section.   

VI. Cost Functions with Bad Outputs 

An alternative to using hyperbolic functions, distance functions, or directional distance 

functions is employing cost functions to model the joint production of good and bad outputs.  

However, only a limited number of studies have employed cost functions when modeling good 

and bad outputs (see Tran and Smith 1983, McClelland and Horowitz 1999, Ball et al. 2005, 

Chapple, Paul and Harris 2005 and 2006, and Mosheim 2006).20 Of these papers, only Ball, et al. 

(2005) explicitly employed the null-jointness and weak disposability assumptions imposed by 

papers employing hyperbolic functions, distance functions, and directional distance functions. 

Ball et al. (2005) specified a nonparametric cost function to calculate productivity change via a 

Malmquist productivity index that treated the good and bad outputs symmetrically. The 

remaining papers specified cost functions with good and bad outputs, but did not discuss 

imposing null-jointness and weak disposability.  

                                                 
20 Gollop and Roberts (1983, 1985) used bad output production to construct measures of 
regulatory intensity when estimating cost functions for electric power plants. In addition, Kolstad 
and Turnovsky (1998) used the ash and sulfur content of fuels when estimating a cost functions 
for electric power plants.   
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VII. Challenges confronting efforts to model good and bad outputs 

A.  Bads – are they inputs or outputs? 

While this survey has focused on the literature that treats bads as outputs, there is a view 

that sees bads as inputs. Cropper and Oates (1992) present a simplified theoretical model in 

which bads are introduced as inputs. Keilbach (1995) and Reinhard, Lovell, and Thijssen (1999) 

are two examples of empirical papers that modeled bads as inputs in a production function.  One 

drawback to modeling bads as inputs when the bads are regulated is the assumption that inputs 

are freely disposable is violated. 

B. Should we worry about a hypothetical unregulated universe? 

The free disposability technology specified in joint production models is constructed 

from the observed behavior of DMUs. Does ignoring levels of labor, capital stock, and technical 

change that might have existed if regulations had not been introduced result in our opportunity 

cost calculations being downward biased?  

C. Violation of null-jointness 

While null-jointness is a reasonable assumption for modeling undesirable by-products 

generated by manufacturing and power plants, it may present issues with other types of 

economic activities. For example, the complete elimination of all undesirable by-products for a 

power plant may be unrealistic; however, there may instances when commercial fishing vessels 

have no bycatch (i.e., the undesirable by-product). Although the non-existence of any by-catch 

violates null-jointness, the LP problems will generate results.       

D.  Material Balances  

The theoretical model developed by Ayres and Kneese (1969) had an empirical 

counterpart in a series of empirical studies on residuals generation and management from a 
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Resources for the Future (RFF) project. Bower (1975) provides a survey of these studies of 

residual management, followed by a Paul MacAvoy critique of the residuals management model. 

After the RFF project concluded - Russell and Vaughn (1974, 1976) appear to be its last 

published works – interest in material balances models waned.   

If joint production models are viewed as reduced form models, then network models can 

be viewed as the true underlying technology. Recently, several researchers have expressed 

reservations about the joint production models due to their failure to account for material 

balances. Pethig (2006) investigated the material balances issues from a non-DEA perspective. 

Subsequently, Coelli, Lauwers, and van Huylenbroeck (2007), Ebert and Welsch (2007), 

Lauwers (2009), Førsund (2009), Van Meensel et al. (2010), Rødseth (2011), and Murty, 

Russell, and Levkoff (forthcoming) have undertaken theoretical and empirical investigations of 

the issue.21  

Network models may address some of the concerns expressed by those championing the 

use of joint production models that incorporate materials balances into the specification of the 

model.     

E. Data Availability  

Perhaps the greatest challenge confronting efforts to model good and bad outputs can be 

summed up by the phrase -“It’s the Data, Stupid.”  The lack of data has been - and remains - an 

ongoing problem confronting researchers. While substantial efforts have been made to collect 

data on the cost of inputs assigned to pollution abatement (see Pasurka 2008), less effort has 

been devoted to collecting data on the bad outputs that regulatory activity attempts to reduce. At 

                                                 
21 Baumgärtner et al. (2001) discuss the relationship between joint production and 
thermodynamics. 
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the national and industry level, systems of environmental and resource accounts might prove to 

be a useful source of data in the coming years. The recently released World Input-Output 

Database (http://www.wiod.org/) represents an effort to link bad output data to input-output 

tables.  In addition, the Handbook of National Accounting: Integrated Environmental and 

Economic Accounting for Fisheries (United Nations, 2004) represents a useful framework for 

organizing data related to fisheries. Unfortunately, the availability of plant-level data remains 

problematic.   

F.  Peer Acceptance 

In addition to the increased use of DEA joint production models, joint production CGE 

models are also implicitly used to investigate the consequences of reducing greenhouse gas 

emissions. Despite growing interest in the topic, some members of the research community 

remain ambivalent. Recently, the editor of Resource and Energy Economics (REE), which 

published the second DEA article that modeled good and bad output production (see Färe, 

Grosskopf, and Pasurka, 1986), published the following note: 

“We also want to emphasize here that REE does not normally publish the following type of 
papers, which are beyond the scope of REE and will be returned to authors without review: 
     . 
     . 
     . 
 The development of purely statistical techniques or the application of (standard) 

statistical techniques without strong links to the theory. We consider techniques like 
VAR or DEA as tools to analyze well-defined economic research questions, rather than 
aims in themselves.  

     . 
     . 
     .” 
 
(http://www.journals.elsevier.com/resource-and-energy-economics/journal-news/note-from-the-
editor-of-resource-and-energy-economics/): 
 
The adventure continues. 
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