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EXECUTIVE SUMMARY 

Background 

In June and August of 2012, the National Marine Fisheries Service (NMFS) received two 

petitions requesting that the northeastern Pacific (NEP) population of white sharks 

(Carcharodon carcharias) be listed as endangered or threatened under the Endangered 

Species Act (ESA).  In September 2012, NMFS published a 90-day finding (77 FR 

59582) announcing that both petitions presented substantial scientific or commercial 

information indicating that the NEP white shark population may warrant listing under the 

ESA and that the agency would conduct an ESA status review of the NEP white shark 

population. NMFS formed a Biological Review Team (BRT) made up of scientists from 

the Southwest Fisheries Science Center having diverse backgrounds in population 

modeling, genetics, conservation biology, fisheries management, and shark biology and 

ecology to conduct the status review. The BRT considered a variety of scientific and 

technical information and conducted its own independent analyses. This document 

reports the results of its comprehensive status review of the NEP white shark population. 

This report was peer reviewed by three independent scientists. 

Approach of the BRT 

While recent years have seen a dramatic increase in the information available on the 

behaviors and movements of NEP white sharks, the BRT acknowledged that there is 

considerable uncertainty surrounding many aspects of abundance, trends in abundance, 

threats, life history, and habitat use for all age and sex classes.  Such uncertainties are 

expected for a naturally uncommon highly migratory species.  The BRT decided to treat 

the uncertainty explicitly by defining where it exists and using a process called Structured 

Expert Decision Making (SEDM) to weigh various plausible scenarios, taking into 

account all available data on the NEP white shark population but also considering 

information on white sharks from other regions and from similar species.  For each 

SEDM exercise, the BRT developed a range of values, based on the best available data, 

across which plausibility points were allocated.  Some of the results are provided in the 

“Executive Summary” and are identified as plausibility points. The exercises for which 

SEDM was used are presented in Appendix A. The BRT’s objectives in taking this 

approach were to make plausible decisions in complex situations involving uncertainties, 

to insure that the decision making process was as transparent as possible and to provide 

assurance that the team was basing its decisions on a common understanding of the 

evidence.   

Status of Northeastern Pacific Population of White Sharks 

White sharks are globally distributed and are the largest of the predatory sharks. In the 

NEP, white sharks are most commonly observed as adults and subadults at near shore 
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aggregations that are typically associated with pinniped rookeries at Guadalupe Island 

(Domeier et al. 2012) and in central California (Klimley et al. 1992, Jorgensen et al. 

2010). Recently, satellite tagging results have shown that they also exhibit an extensive 

offshore phase that differs by sex (Jorgensen et al. 2010, Domeier and Nasby-Lucas 

2013). Early life history stages are more frequently encountered over the continental shelf 

in the southern California Bight and in Sebastián Vizcaíno Bay in Baja California Norte 

(Klimley 1985, Weng et al. 2007b, Domeier 2012, Santana-Morales et al. 2012). As with 

most of the large sharks, white sharks are relatively slow growing and have low overall 

fecundity, making them vulnerable to over exploitation. While they are not targeted in 

current fisheries they are taken incidentally in both artisanal and industrial fisheries 

(Lowe et al. 2012, Santana-Morales et al. 2012). Fisheries mortality, in addition to a 

historic reduction in the prey base across life history phases, may have reduced the 

number of white sharks in the NEP, although the data are insufficient to determine if and 

by how much the population may have declined. Low population numbers for subadult 

and adult white sharks in the NEP were recently reported by Chapple et al. (2011).  The 

task of the BRT was to review the status of the white shark population in the NEP and 

assess its risk of extinction.  To address these issues the BRT: 1) compiled the best 

available information relevant to the status review, 2) determined whether the NEP white 

shark represents a distinct population segment (DPS), and 3) examined the abundance 

estimates and current and projected population status.  The BRT utilized the best 

available information to assess the risk of extinction to the population.  

 

 

Determination of Distinct Population Segment 

 
The BRT examined both the discreteness and significance of the NEP white shark 

population in relation to the global taxon to assess whether it met the criteria of a DPS. 

An examination of the behavioral and genetic data suggests that the NEP white shark 

population is markedly separated from other white shark populations. Photo identification 

(photo-ID) and electronic tagging data reveal a high level of site fidelity and no apparent 

movements outside the NEP (Domeier and Nasby-Lucas 2008, Jorgensen et al. 2010, 

Anderson et al. 2011, Nasby-Lucas and Domeier 2012). Genetic data reveal a 

monophyletic clade with no shared haplotypes between the NEP white shark population 

and those in Japan, Australia/New Zealand and South Africa (Jorgensen et al. 2010, 

Tanaka et al. 2011). This monophyletic pattern supports the inference that little 

movement occurs among these regions.  Based on the genetic and tagging data, the BRT 

concluded that the NEP white shark population was discrete in relation to the global 

taxon.  

 

The BRT also examined the significance of the NEP white shark population with respect 

to the global white shark taxon. The presence of a unique monophyletic clade with no 

shared haplotypes suggests that the NEP white shark is unique. In addition, the NEP 

represents a large portion of the global range of white sharks and its loss would result in a 

significant gap in the taxon’s range. Thus, the BRT concluded that the NEP white shark 

population is significant to the global white shark taxon.  Overall, the BRT concluded 

that the NEP white shark population meets the DPS criteria for discreteness and 
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significance and qualifies as a DPS. Some uncertainties exist, however. Of note is that the 

use of mtDNA data only assesses female-mediated gene flow and samples were only 

collected from central California. In addition, satellite tagging efforts have not been 

conducted in Japan, which could inform mixing across the North Pacific.  
 

Risk Assessment 

 
To determine whether the NEP white shark population is at risk of extinction either now 

or in the foreseeable future the BRT examined: 1) threats to the population, 2) direct and 

indirect information on population trends, 3) the population abundance and associated 

biases, and 4) the impacts of fishery mortality on the population under a range of 

estimated (or assumed) abundance and mortality levels. Finally, the BRT considered all 

of the available information related to extinction risk and assessed the overall extinction 

risk facing the NEP white shark population now and in the foreseeable future.  

 

Threats: Key to assessing extinction risk for the NEP white shark population was to 

examine potential natural and anthropogenic threats to the population. In addition to 

current and future threats, the BRT examined historic threats which provided insight into 

the potential for past population declines. Threats included: 1) fisheries mortality in U.S., 

Mexican and international waters, 2) loss of prey due to overharvesting, 3) small 

population effects, 4) disease and predation, 5) habitat degradation linked to 

contaminants, and 6) global climate change. The BRT conducted SEDM assessment to 

characterize the severity of threats and the associated certainty.  

 

The BRT examined fisheries mortality across a range of fisheries and in all white shark 

age classes. In the NEP, white sharks are and have been caught in a range of fisheries 

with varying risk over time. Offshore, the greatest threat was likely posed by the high 

seas drift net fisheries which overlapped, although minimally, with the habitat of adult 

white sharks in their offshore phase. These fisheries were banned in the early 1990s and 

were considered only a historic risk. Near shore, white sharks across all size classes have 

been taken primarily in net based fisheries. Similar to offshore, changes in regulations in 

U.S. coastal net fisheries have also reduced the overall catch of white sharks from peak 

values in the early 1980s. Current catch estimates for the last 10 years in the U.S. net 

based fisheries are ~28 young-of-the-year (YOY) and juvenile white sharks per year, of 

which ~50% are presumed mortalities. Additional catch of YOY and juvenile white 

sharks is documented in Mexico, primarily in Sebastián Vizcaíno Bay. The estimated 

annual white shark landings for Baja California Norte in 2011 was ~185 individuals all of 

which are assumed to be mortalities. New fisheries regulations banning shark fishing 

from May through July off the Pacific Coast of Mexico have reduced the reported take. 

This may, however, underrepresent the actual catch if there is non-reporting during the 

closure. Overall, fisheries bycatch and mortality were considered to be a moderate risk by 

the BRT.   

 

Another potential risk to the NEP white shark population is linked to the reduction in 

their prey base due to overharvesting. For adult white sharks, pinniped populations were 

severely depleted in the 1800s and only started to recover in the mid-1900s (Gallo-
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Reynoso et al. 2005, Carretta et al. 2011). For white sharks at early life history stages,  

the near shore net fisheries off California depleted a range of demersal species that are 

found in the diets of juvenile and YOY white sharks (Pondella and Allen 2008, Lowe et 

al. 2012). Since the near shore net ban was implemented by the State of California in 

1994, a number of these species and other predators that have habitats and prey that 

overlap with white sharks have increased in abundance (Pondella and Allen 2008). The 

BRT considered prey loss to be a historic, but not a present risk to white shark 

populations across life history phases and the overall risk was considered to be low. 

 

Very small populations are considered to be at increased risk of extinction due to Allee or 

other depensation effects which are tied to survival and reproduction via three 

mechanisms: ecological, genetic, and demographic stochasticity (Berec et al. 2007). The 

actual number at which populations would be considered at risk varies depending on the 

species and the risk being considered. The BRT examined small population effects with 

respect to the NEP white shark population.  White sharks are thought to aggregate for 

mating (Domeier 2012, Jorgensen et al. 2012a) which will increase the local density and 

probability of finding mates. Throughout most of the year, the distribution of white 

sharks is very large and would not be vulnerable to local catastrophes like oil spills.  

Even during the months of aggregation, the range of the aggregation covers over a 

thousand miles and in any year about half of the adult females remain in remote pelagic 

habitat.  Thus, white sharks are naturally buffered against catastrophic events and year-to-

year variance in the productivity of local areas.  The relatively high annual survival rates 

for large sharks should reduce the risk of demographic stochasticity which is linked to 

random variation on the annual number of births or deaths. The BRT concluded that the 

white shark population numbers were large enough (>50 mature adults) to avoid 

deleterious loss of genetic diversity. Overall the BRT considered the risk associated with 

small population size to be low.  

 

One factor that influenced the BRT with regard to the number of mature adults in 

assessing small population risks, as well as in other decisions, was the relatively high 

haplotypic diversity observed in NEP white sharks. This level of genetic diversity either 

reflects a population that is larger than suggested by recent estimates, or a population that 

recently suffered a severe population decline (>90%). Modeling efforts to examine the 

feasibility of a severe decline over the last 2 generations indicated that even with 

mortality levels at the upper end of the estimated range, a severe decline was unlikely. 

The results of the genetic studies and the BRT’s modeling efforts consequently supported 

the idea that the number of mature female white sharks in the NEP is in the hundreds to 

low 1000s.  

 

The BRT also examined the threats associated with disease, predation, contaminants and 

global climate change. Predation on white sharks across life history stages is likely 

limited. There is no information on disease in white sharks. While contaminant loads are 

very high in juvenile white sharks, there is no data to suggest that there are deleterious 

physiological or population level effects (Mull et al. 2012). For climate change, recent 

modeling results suggest a potential increase in white shark habitat but this remains 

speculative and only encompasses adult life history phases (Hazen et al. 2012). Overall 
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the BRT ranked the extinction risk associated with disease, predation, contaminants and 

global climate change as being low. There was, however, a high degree of uncertainty 

given the lack of available information on a number of these factors.  

 

Trends: One indicator of population status is information on trends. A declining trend 

would cause more concern than an increasing trend at a given population size. The BRT 

looked at direct and indirect evidence of population trends in the NEP. There were 

several examples that suggested increasing trends, but no examples that suggested 

declining trends. An analysis of catch-per-unit-effort over time in California net fisheries, 

factoring in changes in the fishery, showed an increase consistent with an increasing 

population. Photo-ID studies at Guadalupe Island showed a significant increase in the 

number of sharks from 2001-2011. Researchers working in central California have 

reported an increase in attacks on pinnipeds and suggested that this results from an 

increase in white shark populations (Klimley and Anderson 1996, Pyle et al. 1996). A 

dramatic increase in attacks on both California sea lions and sea otters has been observed 

in the Channel Islands and south of Monterey Bay. Based on these observations regarding 

trends, the BRT concluded using SEDM that it is likely that the NEP white shark 

population is stable or increasing (71% of plausibility points, see “Approach of BRT” 

above for explanation). The BRT did express considerable uncertainty (23% of 

plausibility points) given the lack of systematically collected data on abundance over 

time and uncertainty about the link between prey encounter rates and abundance.  

 

Current abundance estimates: In addition to trends, the current abundance of a population 

is important for assessing population risk. Estimates of local population abundance were 

available from two studies and in both petitions these numbers were combined to provide 

an estimate of 339 adult and subadult white sharks for the NEP (Chapple et al. 2011, 

Sosa-Nishizaki et al. 2012).  To characterize the demographics of the white sharks 

identified at the two sites, new data on size and sex from both sites were examined. 

Results revealed that the largest component of the population was mature males with 

fewer subadults and mature females at both sites. Sex ratios based on these analyses were 

highly skewed with a ratio of mature females: males of 0.2 at the central California sites 

and 0.6 at Guadalupe Island. The estimates at each site do not appear to represent all 

subadult and adult white sharks in the NEP. Prior to modeling efforts, the BRT more 

closely examined the potential for bias in 1) sex ratio and 2) abundance estimates in the 

studies at Guadalupe Island and in central California.  

 

Sex ratio bias in population estimates: Given the concerns of the BRT that the recently 

published abundance estimates underestimated the population size for all subadult and 

adult white sharks in the NEP, the BRT undertook a number of steps to characterize the 

bias and estimate plausible population numbers. The first step was to characterize the bias 

in sex ratios at the two sites. Using SEDM the BRT concluded that, while the observed 

sex ratio was plausible (33% of plausibility points), the sex ratio at Guadalupe Island was 

likely to be higher (0.8 (48% of plausibility points) and 1.0 (20% of plausibility points)).  

There was very little support for the observed sex ratio at Central California (0.2 (4% of 

plausibility points)) representing the true sex ratio with a broad range of more likely 

scenarios (0.6 (43% of plausibility points), 0.8 (36% of plausibility points) and 1.0 (18% 
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of plausibility points)). The general conclusion that true sex ratios were higher than 

observed sex ratios was based on the timing of sampling efforts which may under-sample 

females, who appear arrive at the aggregation sites later than males. In addition, skewed 

sex ratios as a result of sexual segregation are common in lamnids (white, mako and 

salmon sharks) and so it is not surprising to observe this skew at the aggregation sites in 

the NEP.  Also, there is no known source of mortality specific to juvenile female white 

sharks that would explain the skew. There was some concern about added mortality on 

mature females given their overlap with fisheries when they move into near shore waters 

to pup. These uncertainties are reflected in the BRT’s conclusion that sex ratios of less 

than 1:1 are the most plausible.   

 

Bias in population estimates: In addition to the bias in sex ratio, the BRT evaluated the 

bias associated with the fact that the photo-ID efforts at the two study sites may not 

capture all subadult and adult white sharks in the NEP. For the purpose of modeling 

population productivity, the BRT focused on the number of mature females and asked 

how many mature female white sharks may be missed by the two studies.  Using SEDM, 

the BRT evaluated abundance bias factors of 1 (no bias), 1.2 (the abundance is 20% 

higher), 2 (the abundance is 2 times higher) and 10 (the abundance is 10 times higher). 

The BRT concluded that the actual female abundance in the population was likely 2-10 

times the number of females that are observed at the two study sites (91% of plausibility 

points). The major factors that influenced the BRT’s conclusion were: 1) the potential 

that mature females visited other, unsampled aggregation sites or do not visit the 

aggregation sites, 2) the haplotypic diversity suggesting a female population size of a few 

hundred to low thousands, and 3) the fact that low female abundance levels were not 

considered plausible in light of the estimated levels of fishery catch rates on YOY and 

juvenile white sharks. 

 

Population abundance estimates: The BRT calculated 48 abundance estimates of mature 

females using all potential combinations of sex ratio and abundance bias.  These 48 

abundance estimates were then clustered into 4 abundance categories (60 – 125; 125 – 

200; 200 – 400; and 400-1600 adult females) in addition to a fifth value representing the 

minimum estimate, based on the estimates of adult females from the two studies at 

Central California and Guadalupe Island (47 adult females). Based on the allocation of 

plausibility points from the SEDM on both types of bias, the BRT concluded that there is 

high support (>83% of plausibility points) for greater than 200 mature females in the 

NEP population.  There was virtually no support (<<1% of plausibility points) for the 

observed number of adult females (47) representing the actual number of adult females.  

There was very low support (5% of plausibility points) for there being fewer than 125 

adult females. 

 

Population modeling and fisheries mortality:  Fisheries mortality was the threat that the 

BRT felt posed a moderate level of risk. Therefore, the BRT conducted a population 

assessment to characterize the probability that fisheries mortality could lead to future 

population decline, especially to levels below certain thresholds reflecting extinction risk 

within relevant time periods. Population viability analyses (PVAs) were conducted for 

each female abundance category described above. Population growth rates were 
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calculated using life history information such as female fecundity, age at first 

reproduction and age specific survival rates. Data on fisheries mortality were taken from 

catch data for YOY and juveniles. Given the absence of good data on catch rates for 

mature females, the BRT used SEDM to determine the plausibility of different levels of 

adult female mortality (0, 1, 2, 5, and 10 females killed per year). The BRT concluded 

that the most plausible scenario would be 2 adult female mortalities (34% of plausibility 

points) from fisheries interactions each year but had considerable support for 1 and 5 

(24% and 25 % plausibility points respectively)  killed per year reflecting a good deal of 

uncertainty. For the purpose of the population modeling, the BRT considered all potential 

combinations of the 5 levels of female mortality and 4 adult female abundance categories, 

making for a total of 20 modeling scenarios.  

 

Risk categories: To determine high risk we considered two categories:  
1) the declining population category (where the population declines to near-

extinction within a certain timeframe),  
2) the small population category (where the population is dangerously small 

currently).  
 

For each modeling scenario, the BRT evaluated the extinction risk to the population 

based on the following criteria regarding the abundance of mature females: 

 
High Risk--a population is at high risk if it meets either condition: 
 

A. the population has a 5% chance of falling below 50 mature individuals 
(25 mature females) in 60 years (~3 generations) 

B. the current population is less than 250 mature individuals (125 mature 
females). 

 

The scenarios that fell under this category included those with a present-day adult 

female abundance of 60 - 125 for all levels of adult female mortality and the 

scenario with a present-day adult female abundance of 125-200 and adult female 

bycatch mortality of 10 per year. 

 
We related Medium risk to our High risk categories by adding 40 years (~2 
generations) as our definition of ‘foreseeable future’. The medium risk category is 
based on the idea of becoming a high risk population within ~ 2 generations. 
Medium Risk--a population is at medium risk if it meets either condition: 
 

A. the population has a 5% chance of falling below 50 mature individuals 
(25 mature females) in 100 years (~5 generations) 

B. the population has a 5% chance of falling below 250 mature individuals 
(125 mature females) in 40 years (~2 generation times). 
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The scenarios that fell under this category included those with a present-day adult 

female abundance of 125-200 and adult female bycatch mortality levels of 0, 1, 2 

or 5 per year. 

 
Low and very low risk categories do not have the two categories like the high or 
medium risk categories.  
 
Low risk-- The population does not meet the criteria for medium or high risk but the 

population has at least a 10% probability of showing a decline within 100 years (~5 

generations).  
The scenarios that fell under this category included those with a present-day adult 

female abundance of 200-400 with all levels of adult female bycatch mortality 

and the scenario with a present-day adult female abundance of >400 at an adult 

female bycatch mortality of 10 per year. 

 
Very low risk-- The population does not meet any of the above criteria for high, 
medium, or low risk. The population has a high probability of being stable or 
increasing. 

The scenarios that fell under this category included those with the highest present-

day adult female abundance (>400) with adult female bycatch mortality of 0, 1, 2 

or 5 per year.  

 

In addition to the examination of extinction risk, the PVAs and associated estimates of 

fisheries catch and mortality rates also informed the plausibility of the different present-

day adult female abundance categories (Nf). This was used to inform a second vote on the 

abundance bias as mentioned above. For the lowest two abundance scenarios (Nf = 60 – 

125 and Nf = 125 – 200), the corresponding annual fishery catch rates for YOYs (means 

= 0.48 and 0.27) were extremely high. For the minimum estimate of 47 adult females 

(based on the photo-ID data), the mortality rate for YOY was essentially 100%.  

Population removal rates for sharks, even for selective gears (such as pelagic longlining), 

are probably less than 20% (Worm et al. 2013). Vaquita porpoises that are subjected to 

extremely intensive gill net exposure throughout their range have an estimated bycatch 

mortality rate ~0.20 based on the model used in Jaramillo-Legorreta et al. (2007).  It 

would be exceptional if gill nets had the efficiency to capture greater than 20% of YOY 

white sharks each year, especially given that the available bycatch estimates come from 

small fishing fleets operating throughout a limited portion of known or suspected YOY 

nursery habitat (O. Sosa-Nishizaki, CICESE, pers. comm.).  This information challenges 

the plausibility of the abundance scenarios with less than 200 adult females. It should be 

noted, however, that the model results are highly dependent on the inputs for fisheries 

mortality and there is some uncertainty with regard to the level of bycatch on juvenile 

and YOY white sharks.   

  

Overall Risk assessment: Using SEDM, the BRT assessed the overall extinction risk to 

the NEP population, taking into consideration the broad range of factors evaluated in the 

status review, including all of the threats to the population, the population status and 

trends, and the model results.  The BRT concluded that the NEP white shark population 
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was most likely at a low to very low risk of extinction (see Table below for summary of 

plausibility points). This is consistent with the BRT’s analyses and conclusions that the 

present-day population most likely has greater than 200 mature females.  

 
Table 1. Summary of the SEDM plausibility points for each risk category.  

 

Risk Category Average SEDM weight (SD) 

Very low 50 (19.3) 

Low 36 (12.8) 

Medium 9 (8.3) 

High 5 (5.6) 

 

With a mature female population in the hundreds, it follows that the total population 

estimate, including mature males and subadults, would be considerably higher than the 

estimate of 339 subadults and adults provided by the petitions. While the BRT did not 

attempt to estimate the number of subadult and adults, the total population estimate of 

male and females across size classes was ~3000 at a mature female abundance level of 

200.  

 

The BRT’s conclusions are based on the best available data. The BRT recognizes that 

there are a number of limitations to the analyses that will be informed as additional 

research results are published.  
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1. Introduction 
 

1.1. Scope and intent of the status review  

 

This document is the status review in response to two petitions1,2 to list the northeastern Pacific 

(NEP) population of white shark (Carcharodon carcharias) as threatened or endangered under 

the Endangered Species Act (ESA). The petitions cite concerns regarding the small estimated 

population size of white sharks in the northeastern Pacific and threats to the population such as 

fisheries harvest and bycatch, coastal development, pollution, and ocean acidification. In 

addition, the petitioners requested the designation of critical habitat for the NEP population of 

white sharks.  

 

Under the ESA, a status review shall be promptly commenced if a petition is found to present 

substantial scientific or commercial information that the petitioned action may be warranted (16 

U.S.C. 1533(b)(3)(A)).  The National Marine Fisheries Service (NMFS) decided that the 

petitions had sufficient merit for consideration and that a status review was warranted (77 FR 

59582, September 28, 2012).  The ESA stipulates that listing determinations should be made on 

the basis of the best scientific and commercial information available.  As a result of this finding, 

NMFS committed to completing an ESA status review of the northeastern Pacific population of 

white shark (hereafter, NEP white sharks or NEP white shark population) and convened a 

Biological Review Team (BRT)3 consisting of Federal biologists with diverse scientific 

backgrounds to conduct the review.  The purposes of this Status Review were to determine 

whether the NEP white shark population is a distinct population segment (DPS) as defined under 

the ESA, assess its extinction risk, and identify and evaluate potentially significant threats to the 

population. To conduct this Status Review, the BRT considered a variety of scientific 

information from the literature, unpublished documents, and direct communications with 

researchers working on NEP white sharks, as well as technical information submitted to NMFS.  

All information not previously peer-reviewed was formally reviewed by the BRT. Only the 

information found to meet the standard of best-available science was considered further.  

Analyses conducted by individual team members were subjected to independent peer review 

prior to incorporation into the status review.   

                                                 
1 WildEarth Guardians to U.S. Secretary of Commerce and the National Oceanic and Atmospheric 

Administration through the National Marine Fisheries Service, June 20, 2012, “Petition to list the northeastern 

Pacific ocean distinct population segment of great white shark (Carcharodon carcharias) under the U.S. endangered 

species act” 

2 Oceana, the Center for Biological Diversity, and Shark Stewards to U.S. Secretary of Commerce and the 

National Oceanic and Atmospheric Administration through the National Marine Fisheries Service, August 10, 2012, 

“Petition to list the northeastern Pacific population of white shark (Carcharodon carcharias) as threatened or 

endangered” 

3 The Biological Review Team for the NEP white shark consisted of the following members from the 

NMFS Southwest Fisheries Science Center (area of expertise in parentheses): Dr. Heidi Dewar (Team Leader; 

(ecology and movements of tunas, sharks and billfish), Dr. Tomoharu Eguchi (marine turtle population and 

ecological modeling), Dr. John Hyde (fisheries genetics), Dr. Doug Kinzey (population assessments of Antarctic 

krill), Dr. Suzanne Kohin (ecology and population dynamics of pelagic sharks), Dr. Jeff Moore (population 

dynamics/risk assessment), Dr. Barbara Taylor (genetics/risk assessment), and Dr. Russ Vetter (physiological 

ecologists and molecular geneticist).   
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This document reports the results of the BRT’s comprehensive status review of NEP white 

sharks. These conclusions are subject to revision should important new information arise in the 

future. This document is a compilation of the best available scientific and commercial 

information and a description of past, present, and likely future threats to NEP white sharks. It 

does not represent a decision by NMFS on whether this population should be proposed for listing 

as threatened or endangered under the ESA. That decision will be made by NMFS after 

reviewing and considering the information and conclusions presented in this Status Review, 

other relevant biological and threat information not included herein, efforts being made to protect 

the species, and all relevant laws, regulations, and policies. The decision will be posted on the 

NMFS Web site (http://www.nmfs.noaa.gov/pr/species/) and announced in the Federal Register. 

 

1.2. Structured expert decision making 

 

To conduct the status review, the BRT used the best available data and at times needed to make 

decisions in the face of different levels and sources of uncertainty.  To deal with this uncertainty, 

the BRT adopted structured expert decision making (SEDM) as a formal method to make 

decisions or express opinions.  These formal methods are important in a setting where 

quantitative measures of uncertainty derived from the empirical data are not available to address 

all sources of pertinent uncertainty. One example of an influential factor addressed in this 

manner is the sex ratio of adults at the sampling sites.  SEDM employs a plausibility point 

method (although other methods were employed also, as described later), that is a variation of a 

method used by scientific teams evaluating options under the Northwest Forest Plan (Forest 

Ecosystem Management Assessment Team (FEMAT) 1993). This method allowed the BRT to 

quantify the team’s best professional judgment regarding a decision, and thus improve 

transparency in how these decisions were made in the status review.  Each BRT member was 

asked to distribute 100 plausibility points among the choices for various decisions throughout the 

status review process, reflecting his or her opinion about the plausibility of different scenarios 

(e.g., a range of possible sex ratios and proportions of adult population present at the sampling 

sites).  If a BRT member was certain of a particular option, or felt it was the only plausible 

scenario, he or she could assign all 100 points to that option.  A BRT member with less certainty 

about which option best reflected reality or best reflected the population’s status could split the 

points among two or more options.  This method has been used in all status review updates for 

anadromous Pacific salmonids since 1999, as well as in the status reviews of Southern Resident 

killer whales (Krahn et al. 2002, Krahn et al. 2004), West Coast rockfishes (Stout et al. 2002), 

Pacific herring (Stout et al. 2001), Pacific groundfish (Gustafson et al. 2000), North American 

green sturgeon (Adams et al. 2002, Biological Review Team (BRT) 2005), black abalone 

(VanBlaricom et al. 2009), and Hawaiian false killer whales (Oleson et al. 2010).  Alternative 

methods were occasionally used, such as when a particular question did not concern plausibility, 

but rather the degree of severity, or level of certainty of individual population threats.  
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1.3. Key questions in ESA evaluations 

 

1.3.1. The “species” question 

 

For the purpose of the ESA, the term “species” includes (ESA section 3(16)) 

 

 “any subspecies of fish or wildlife or plants, and any distinct population segment 

of any species of vertebrate fish or wildlife which interbreeds when mature.” 

 

A distinct population segment, or DPS, must be “discrete” from other populations and 

“significant” to the taxon (species or subspecies) to which it belongs (see 61 FR 4722: February 

7, 1996).  A DPS is discrete if it is markedly separated from other populations of the same taxon 

as a consequence of physical, physiological, ecological or behavioral factors. Alternatively, the 

DPS may be discrete if it is delimited by international governmental boundaries within which are 

notable differences in management of the species or its habitat.  If a population segment is 

considered discrete, NMFS must then consider whether the discrete segment is “significant” to 

the taxon to which it belongs.  Significance may be measured as persistence in a unique or 

unusual ecological setting, evidence that loss of the DPS would result in a significant gap in the 

range of the taxon, evidence that the discrete population segment represents the only surviving 

natural occurrence of a taxon within its historic range, or marked differentiation in its genetic 

characteristics.  A population segment may include, but is not limited to, one of these criteria to 

be considered significant.  This list of criteria is not exhaustive and other criteria relevant to the 

biology or ecology of the species may be used, as appropriate. 

 

1.3.2. The “extinction risk” question 

 

The ESA (Section 3) defines the term “endangered species” as “any species which is in danger of 

extinction throughout all or a significant portion of its range.” The term “threatened species” is 

defined as “any species which is likely to become an endangered species within the foreseeable 

future throughout all or a significant portion of its range.” The ESA states that a variety of 

information shall be used in evaluating the level of risk faced by a species or a DPS.  Important 

considerations include:  

 

1) the present or threatened destruction, modification, or curtailment of its habitat or range;  

2) overuse for commercial, recreational, scientific or educational purposes;  

3) disease or predation;  

4) the inadequacy of existing regulatory mechanisms; or  

5) other natural or man-made factors affecting its continued existence.  

  

According to the ESA, determining whether a species is threatened or endangered should be 

made on the basis of the best scientific information available on its current status, after taking 

into consideration conservation measures that are proposed or are in place.  This BRT was not 

asked to review the adequacy of existing regulatory mechanisms as that determination is best 

made by the management portion of the agency. 
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1.4. Summary of information presented by the petitioners 

 

The petitions submitted by WildEarth Guardians and jointly by Oceana, the Center for Biological 

Diversity, and Shark Stewards assert that: 1) NEP white sharks are a genetically distinct 

population; 2) the population level is so low that NEP white sharks are at risk of extinction 

without regards to other risks; and 3) additional risks to NEP white sharks include pollution, 

global warming, ocean acidification, low levels of available prey resources, overfishing, and 

habitat destruction.  The petitions assert that listing of the NEP white shark population as a 

threatened or endangered DPS under the ESA is needed to ensure that this population does not 

become extinct.  

 

1.4.1. The DPS question: “Discreteness” 

 

The petitioners presented the following arguments that NEP white sharks are “discrete” from 

other populations of white sharks.  

 

1.4.1.1. The NEP white shark population differs markedly from other oceanic 

populations of the species because of physical factors 

 

The petitioners stated that the NEP white shark population is reproductively isolated and that 

genetic analysis demonstrates that this population is genetically distinct. While the NEP white 

shark population has some genetic similarities with the Australian/New Zealand population of 

white shark, sampling shows that these populations have been separated for hundreds of 

thousands of years resulting in a clear genetic divergence between the populations (Jorgensen et 

al. 2010). The NEP white shark is thought to have initially been established approximately 

200,000 years ago by individuals that migrated from Australia/New Zealand waters (Jorgensen et 

al. 2010). 

 

1.4.1.2. The NEP white shark population differs markedly from other oceanic 

populations of the species because of behavioral factors 

 

The petitioners state that the NEP white shark population is geographically separated from other 

white shark populations due to strong site fidelity and adherence to distinct migratory patterns 

within the NEP. Although white sharks are capable of long-distance dispersal, the NEP white 

shark population appears to remain within a fixed geographical range, with consistent use of 

three core areas within the NEP (i.e., coastal shelf waters of North America primarily from 

central California to Baja California; the slope and offshore waters of the Hawaiian archipelago; 

and offshore waters approximately halfway between California and Hawaii) (Boustany et al. 

2002, Jorgensen et al. 2010, Domeier 2012). Tagging studies show no evidence of straying or 

spatial overlap with other white shark populations (Jorgensen et al. 2010).  
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1.4.1.3. The NEP white shark population should be considered discrete because it is 

delimited by international governmental boundaries within which 

differences in control of exploitation, management of habitat, conservation 

status, or regulatory mechanisms exist that are significant in light of section 

4(a)(1)(D) of the ESA 

 

The petitioners state that the NEP white shark population inhabits the waters of the United 

States’ Exclusive Economic Zone, but also transits the high seas and occurs in Mexican waters, 

with potentially infrequent migrations to the Exclusive Economic Zone of Canada. Thus, these 

white sharks are subject to exploitation outside U.S. waters by non-U.S. actors and may be 

impacted by differences in management between the United States, other nations, and the high 

seas.4 

 

1.4.2. The DPS question: “Significance” 

 

The petitioners presented the following arguments to demonstrate that the NEP white shark is 

“significant” to the taxon to which it belongs. 

   

1.4.2.1. The NEP white shark population persists in a unique ecological setting for 

this species 

 

The petitioners stated that the NEP white shark population persists in an ecological setting 

unique to the species, because it is the only white shark population in the California Current 

Large Marine Ecosystem. The petitioners describe the California Current Large Marine 

Ecosystem as a biologically rich and dynamic ocean environment with a coastal upwelling 

system that results in varying abundances of prey and predators, but that it is also highly 

sensitive to the impacts of the El Niño Southern Oscillation. The NEP white shark population is 

also the only white shark population to occupy the offshore area of the Pacific Ocean between 

Hawaii and California, which is hypothesized to be used for foraging and/or mating.  

 

Additionally, the petitioners assert that the NEP white shark population plays an important 

ecological role that is essential for the health of the NEP ecosystem, as a top predator that may 

play an important top-down role in structuring the California Current Large Marine Ecosystem 

(Block et al. 2011). We note that in determining whether a discrete segment is significant, NMFS 

focuses on the biological and ecological significance of the population segment to the species, 

not to the ecosystem.  

 

1.4.2.2. Loss of the NEP white shark population would result in a significant gap in 

the range of the taxon 

 

The petitioners state that the loss of the NEP white shark population would result in a significant 

gap in the range of the species as recent data indicate that the NEP population does not mix with 

                                                 
4 Note: The petitioners’ arguments reflect a misunderstanding of this criterion. This criterion states that a 

population may be considered discrete if it is separated from other populations by international boundaries within 

which significant differences in regulatory mechanisms exist. That the NEP population crosses these international 

boundaries actually argues against considering this population as discrete from other white shark populations.   
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any other regional populations of white sharks and, if this population were lost, it would likely 

not be replaced by immigrating individuals from an outside population (Hueter et al. 2004, 

Jorgensen et al. 2010). The NEP white shark population persists only in its unique range. As 

described above, the NEP white shark does not interbreed with other breeding populations. 

 

1.4.2.3. The NEP white shark population differs markedly from other populations of 

the species in its genetic characteristics 

 

The petitioners state that the NEP white shark population is markedly different from other 

populations based on its genetic characteristics. Studies demonstrate that this population may 

have descended from the Australia/New Zealand population over 200,000 years ago (Jorgensen 

et al. 2010). Since then, however, this population has been isolated from other populations and 

breeds only with individuals within the population, resulting in genetic distinction from all other 

white shark populations (Jorgensen et al. 2010, Gubili et al. 2012).  

 

1.4.3. Risk factors 

 

The petitioners stated that the NEP white shark population qualifies as endangered or threatened 

under the ESA based on all five of the ESA factors to be considered (see Section 1.3.2 of this 

Status Review).  The petitioners identified specific threats to the NEP white shark population to 

include: (1) their low population level; (2) incidental catch in fisheries; (3) high contaminant 

levels; (4) habitat alteration due to ocean acidification, ocean warming, and other stressors; and 

(5) paucity of scientific data on key population factors. The petitioners presented the following 

information to demonstrate that the NEP white shark population faces threats associated with all 

five ESA factors.   

 

1.4.3.1. Present or threatened destruction, modification, or curtailment of the 

species’ habitat or range 

 

The petitioners asserted that white shark habitat in the NEP has been highly modified by human 

activity. Increasing human activity, especially when concentrated in coastal areas, may lead to 

degradation of important inshore feeding and reproductive habitat for white sharks. One concern 

cited by the petitioners was the depletion of prey resources for NEP white sharks. The petitioners 

stated that human exploitation massively depleted all populations of pinnipeds, an important prey 

resource for adult white sharks. While population trends for these pinnipeds are increasing, the 

petitioners contended that they were in a depleted state for a prolonged period of time and 

currently remain below historic levels. In addition, the petitioners stated that there have been and 

continue to be major commercial fisheries for most of the prey resources that are important for 

other life stages of white sharks, such as Pacific sardine (Sardinops sagax), salmon, white 

seabass (Atractoscion nobilis), black rockfish (Sebastes melanops), striped bass (Morone 

saxatilis), spiny dogfish (Squalus acanthias), crustaceans, cephalopods, cabezon 

(Scorpaenichthys marmoratus), lingcod (Ophiodon elongates), and Pacific mackerel (Scomber 

japonicas) (Klimley 1985, Ellis and McCosker 1995, California Department of Fish and Game 

2010).  
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Another concern cited by the petitioners is the potential bioaccumulation of contaminants in 

white sharks in the NEP, resulting from the discharge of pollutants into coastal habitats. The 

petitioners stated that this is a particular concern in the Southern California Bight, an area that is 

believed to serve as a nursery area for white sharks and where young white sharks were found to 

have high levels of mercury and specific pollutants (Mull et al. 2012).  

 

In addition, the petitioners cited a recent finding that ocean acidification is progressing rapidly in 

the California Current Large Marine Ecosystem and will grow more severe in the range of the 

NEP white shark population (Gruber et al. 2012). While severity of the effects on specific 

species or the overall ecosystem are uncertain, the study indicates that the California Current 

Large Marine Ecosystem is moving rapidly toward conditions that are well outside the natural 

range. The petitioners argued that this could adversely impact the marine food web, including 

white sharks. In combination with ocean warming, these effects could be cumulative and 

synergistic (Pörtner 2008). 

 

1.4.3.2. Overutilization for commercial, recreational, scientific, or educational 

purposes 

 

The petitioners stated that right now, the capture and killing of white sharks in fishing gear is the 

key direct threat to the NEP population. Worldwide, white sharks may be targeted or incidentally 

caught in commercial and sport fisheries and are highly valued for their fins (for use in shark fin 

soup) and in the curio trade. Off Southern California, reported white shark captures ranged from 

2 to 25 sharks per year over the period of 1936 to 2010 and indicate an increasing trend in 

bycatch over the last decade (Lowe et al. 2012). The petitioners argued that despite the 

regulations curtailing near shore set gillnet effort off California, this fishery continues to account 

for the greatest number of white shark interactions of any U.S. West Coast fishery. The 

petitioners also expressed concern regarding bycatch of white sharks off Mexico, citing a study 

that documented bycatch of 111 juvenile white sharks over the course of 11 years (1999-2010) 

along the coast of Baja California, Mexico (Santana-Morales et al. 2012). 

 

1.4.3.3. Disease or predation 

 

One of the petitioners asserted that the introduction of mercury, organochlorines, and other 

pollutants to the ocean and the effects of these pollutants on NEP white sharks may be 

categorized as disease. The petitioner stated that although we do not know how these pollutants 

impact the population, potential effects may include behavioral changes, emaciation, cerebral 

lesions, and impaired sexual development (Mull et al. 2012). The petitioner added that all life 

stages of NEP white sharks may be vulnerable to high body burdens of pollutants (Domeier 

2012).  

  

1.4.3.4. Inadequacy of existing regulatory mechanisms 

 

The petitioners stated that despite some protections, white shark populations are still declining 

globally. Although there are some prohibitions on the landing, targeting, and trading of NEP 

white sharks within the United States, the petitioners asserted that existing regulatory 

mechanisms are inadequate to address the continued incidental catch of white sharks by a suite 
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of fisheries on the U.S. West Coast. In particular, the petitioners argued that national protections 

for white sharks are insufficient when it comes to monitoring, control, and surveillance of this 

species, because it is captured in several fisheries that are not subject to limits on incidental take 

or adequate observer coverage (CITES 2004). At the international level, the petitioners cited the 

lack of international laws to protect live white sharks and the lack of trans-boundary 

management programs as deficiencies that need to be addressed for the conservation and 

management of a highly migratory species like the white shark (CITES 2004). Thus, the 

petitioners concluded that existing regulatory mechanisms are inadequate to provide the 

necessary protections for NEP white sharks. 

 

1.4.3.5. Other natural or manmade factors 

 

The petitioners cited several other natural or manmade factors that may be affecting the survival 

and recovery of NEP white shark. First, the petitioners stated that the bioaccumulation of high 

levels of mercury and organochlorines in the tissues of juveniles may result in physiological 

impairments and reduced fitness (Mull et al. 2012). Juvenile white sharks are particularly at risk 

of exposure to contaminants due to their use of nursery habitats next to urban areas in the 

Southern California Bight. Second, the petitioners stated that negative media attention is a threat 

to white sharks, because it generates general paranoia and encourages targeting of the species for 

sport or trophy hunting (IUCN 2009). Third, the petitioners considered the species’ life history 

characteristics (e.g., slow growth, late maturation, long-life, long generation time, small litter 

size, and low reproductive capacity) and small estimated population size to be factors that 

increase the extinction risk of the NEP white shark population. Finally, the petitioners asserted 

that the synergistic effects of all of the threats facing the NEP white shark population and its 

habitat could cause a greater and faster decline in the population than might be expected.   

 

1.5. Treatment of data and arguments presented in the petitions 

 

The data and arguments presented in the petitions were considered by the BRT along with all 

other public comments submitted in response to the 90-day finding (77 FR 59582, September 28, 

2012) requesting additional scientific and commercial data.  The petitions and their arguments 

are occasionally referenced throughout this Status Review; however, the Status Review will not 

respond to each of the petitioners’ arguments in turn. 
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2. Background Information on White Sharks 
 

This review focuses on data from the NEP but draws on information from other areas across the 

species range where appropriate or where information in from the NEP was lacking or poor.  

 

2.1. Life history and ecology 

 

2.1.1. Taxonomy and distinctive characteristics 

 

All white sharks belong to the family Lamnidae (Order Lamniformes) (Compagno 2001).  White 

sharks are recognized by their spindle-shaped body and moderately long conical snout. Adults 

have large flat triangular serrated teeth in both their upper and lower jaw, long gill slits, a large 

first dorsal fin and small second dorsal and anal fins, and upper and lower lobes on the caudal fin 

which are approximately the same size. The white shark generally has a gray or brownish gray to 

blackish dorsal surface and white ventral surface. The margin between the dark dorsal and white 

ventral surfaces is sharply delimited and creates a distinct pattern that can be used to identify 

individuals. The iris of the eye is black.  

 

2.1.2. Global range and habitat use 

 

The white shark is a circumglobal species that lives in coastal regions as well as the open ocean 

(Compagno 2001). White sharks are most frequently observed in inshore temperate continental 

waters of the Western North Atlantic, Mediterranean Sea, southern Africa, southern and western 

Australia, and the northeastern Pacific (NEP). Young-of-the-year (YOY) and juvenile white 

sharks are thought to prefer shallow coastal waters (Dewar et al. 2004, Weng et al. 2007b, Bruce 

and Bradford 2012). Adults and subadults are most commonly observed near pinniped rookeries 

but also range far from shore spending protracted periods in pelagic habitats (Klimley 1985, 

Domeier and Nasby-Lucas 2008, Jorgensen et al. 2010). Range and habitat descriptions specific 

to the NEP population can be found below.  

 

2.1.3. Reproduction and growth 

 

Given the challenges associated with obtaining a large sample size of white sharks, a complete 

suite of values for life history parameters is not available for the NEP white shark population. 

Consequently, results from relevant white sharks studies from all ocean basins were surveyed to 

compile a summary of life history traits (Table 2.1). White sharks are categorized as YOYs, 

juveniles, subadults, and adults as defined in Bruce and Bradford (2012). YOY are sharks in their 

first year and range from approximately 1.2 - 1.75 m in total length (TL), with size at birth 

ranging from 1.2 -1.5 m TL (Francis 1996). Juveniles range approximately from 1.75 – 3.0 m 

TL, and subadults range from 3.0 m TL to the size at maturity which is reported to be 3.6 – 3.8 m 

TL for males and 4.5 – 5 m TL for females (Cailliet et al. 1985, Francis 1996, Wintner and Cliff 

1999, Malcolm et al. 2001). A number of studies have used vertebral bands to construct von 

Bertalanffy growth curves, a model relating size to age that is used extensively in fisheries. 

Cailliet et al. (1985) used data from 20 white sharks sampled in the NEP (Table 2.1). Their 

results are similar to those of Winter and Cliff (1999) and Malcolm et al. (2001) for South Africa 

and Australia, respectively. A growth study on YOY in captivity found that under optimal 
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conditions in captivity, the sharks showed a high growth capacity with approximately twice the 

growth rate estimated from a von Betalanffy growth function as that determined by Cailliet et al. 

(1985) (Ezcurra et al. 2012). While very large maximum sizes are reported in the scientific 

literature, 6 m TL for females is the largest validated measurement (Castro 2012). Maximum age 

has also been difficult to obtain. In the NEP, the highest age estimate comes from Anderson et al. 

(2011) who saw the same individual for 22 years at a coastal aggregation site. Given that white 

sharks are thought to recruit to coastal aggregations at ~ 3 m TL or 5 years of age, the age 

estimate for this individual was 27-30 years of age.  In recent study for Atlantic white sharks, 

vertebral band counts (validated using bomb radio carbon dating) provided maximum age 

estimate of ~70-100 years (Natanson and Skomal in review).  

 

Data for reproductive parameters such as litter size are also limited. For example, no pregnant 

female white sharks have been caught in the NEP despite the fact that the southern California 

Bight is a nursery ground. Francis (1996) summarized the data from 10 pregnant white sharks 

from around the globe and reported that maturity ranged from 4.5-5 m, which is similar to that 

reported by others (Malcolm et al. (2001): 5 m; Domeier and Nasby-Lucas (2013): 4.6 m). The 

average litter size from 11 females was reported to be 8.9 (Mollet et al. 2000). Sex ratio in utero 

is 1:1 (Francis 1996). Gestation is thought to be longer than a year and estimated at 18 months 

(Francis 1996, Mollet et al. 2000), but the actual duration is unknown. Consistent with the long 

gestation period, pupping frequency has been suggested to range broadly between 2-3 years. As a 

part of the photo ID study at Guadalupe Island it was possible to quantify the visitation patterns 

of adult females over a period of 10 years. While most females returned every two years, which 

is presumably linked to their reproductive cycle, in some instances it was every three years. 

Taking an average over 23 females provided an estimate of a 2.2 years inter-birth interval 

(Nasby-Lucas and Domeier 2012, Nasby-Lucas unpublished data). Male maturity has been 

inferred typically from the length of the claspers, as well as the level of calcification and 

sometimes the presence of seminal fluid in the claspers. Estimates of the size at maturity for 

males typically fall between 3.6 and 3.8 m TL (Pratt 1996, Malcolm et al. 2001). The ages 

associated with the size at maturity (females: 12- 18 years; males: 8-10 years) are taken both 

from the von Bertalanffy growth curve and studies where age was determined from vertebral 

bands (Cailliet et al. 1985,Wintner and Cliff 1999,  Malcolm et al. 2001). Additional information 

on most aspects of both growth and reproduction is needed.   

 

2.1.4. Foraging ecology 

 

Information on foraging ecology in white sharks comes from stomach content analysis and visual 

observation of feeding events in larger sharks (Klimley 1985, Compagno et al. 1997, Skomal et 

al. 2012).  YOY and juvenile white sharks are known to feed primarily on invertebrates, 

demersal teleosts and small elasmobranchs, as well as squid and epipelagic fish. Stomach 

contents of YOY off California were found to contain bony fishes (cabezon and lingcod), 

cartilaginous fishes (gray smooth-hound (Mustelus californicus), spiny dogfish and a dasyatid 

ray), and a crustacean (spot-bellied rock crab). Stomach contents for juveniles contained bony 

fishes (Pacific sardine, green sturgeon (Acipenser medirostris), king salmon (Oncorhynchus 

tshawytscha), white seabass, black rockfish and striped bass), cartilaginous fishes (brown 

smooth-hound (Mustelus henlei), soupfin shark (Galeorhinus galeus) and bat ray (Myliobatis 

californica), and a crustacean (Klimley 1985). 
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Once white sharks reach about 3 m their diets expand to include marine mammals (Klimley 

1985). The most important prey items include pinnipeds (including, seals, sea lions, and elephant 

seals) and fishes (including other sharks and rays). Less common items in stomach contents 

include marine reptiles (mostly sea turtles), larger cephalopods, gastropods, and crustaceans. 

White sharks are also observed to scavenge on large and small cetaceans (Compagno et al. 1997, 

Curtis et al. 2006, Dicken 2008). Recent isotope data suggests that not all sharks make the shift 

to marine mammal prey (Kim et al. 2012) and some may continue to forage at lower trophic 

levels. It is important to note that no diet data exist on shark feeding habits in the North Pacific 

during the period when they are outside coastal waters.
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Table 2.1Compilation of C. carcharias life history characteristics from the published literature.  

Parameter Value Location References and notes 

Max age 27-30 years NE Pacific (Anderson et al. 2011); saw same animal for 22 years.  

Max (TL) 

(observed) 6 m 
Western 

Australia 
(Randall 1987, Castro 2012): all other estimates of max size were not verified. 

Males are smaller than females (max size probably around 540-550 cm).  

Mature TL (male) 3.6-3.8 m 

South Africa, 

Australia, 

Atlantic 
(Pratt 1996, Wintner and Cliff 1999, Malcolm et al. 2001): based primarily on 

condition of claspers (both the length and level of calcification) 

Mature age (male) 8-10 years South Africa 
(Wintner and Cliff 1999): counted 8 band pairs in a mature male. 360-380 cm TL  

corresponds to 7.5-8.5 years of age using Cailliet et al. (1985) 

Mature TL 

(female) 4.5-5 m Global 
(Francis 1996, Uchida et al. 1996, Malcolm et al. 2001, Tanaka et al. 2011, 

Domeier and Nasby-Lucas 2013):  Most put pregnant females at 450-480 cm TL 

Mature age 

(female) 12-15 years Global 
This is the age range from the Cailliet et al. (1985) von Bertalanffy curve using a 

size a maturity of 4.5-5 m TL (using 4.6-4.8 m TL, the range  is 12-13 years).  

Gestation ~18 months Global 
(Cailliet et al. 1985, Francis 1996, Mollet et al. 2000): >12 months but actual 

number uncertain 

Pupping frequency 2.2 years NE Pacific (Nasby-Lucas and Domeier 2012, Nasby-Lucas unpublished): using photo-ID data  

Parturition Spring/Summer Global (Francis 1996, Domeier 2012, Lowe et al. 2012) 

Litter size mean 8.9 Global (Mollet et al. 2000): range 4-14 (n=11); 

Size at birth 1.2-1.5 m Global Francis (1996) summarized values from a range of sources 

L∞ (m)1 7.64  m NE Pacific (Cailliet et al. 1985): size range of 1.29-5.08 m TL (n = 20) 

t0
2  -3.53 years   (Cailliet et al. 1985) 

K3 0.058    (Cailliet et al. 1985) 

YOY TL 1.2-1.75 m Global (Cailliet et al. 1985, Francis 1996, Wintner and Cliff 1999, Malcolm et al. 2001) 

Juveniles TL 1.75-3 m Global  (Malcolm et al. 2001) 

Subadults TL 
3 m – Mature 

TL Global  (Martin 2005, Bruce et al. 2006) 

Adults TL 
Mature to Max 

TL Global  (Francis 1996, Pratt 1996) 
1L∞ = theoretical maximum length obtained 
2t0 = theoretical age at L = 0 
3K = growth coefficient, proportional to rate at which L∞ is reached 
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2.2. Distribution and habitat use 

 

Patterns of occurrence in space and time provide important insight into a species’ 

ecology, life history, and stock structure and connectivity between regions, as well as 

potential sources of mortality from fisheries, loss of prey resources, or habitat 

destruction. As a consequence, considerable effort has been expended to understand the 

distributional patterns of white sharks. Efforts have advanced over the years from simple 

sighting, catch, and attack data to the use of electronic tags, photo-ID and genetics. All 

results reveal a habitat separation based on age classes categorized as YOY, juveniles, 

subadults and adults, as defined above. Larger sharks also show spatial segregation by 

sex. A summary of both historic and recent findings for different age classes are 

presented below.  

 

2.2.1. YOY and juveniles 

 

2.2.1.1. Distribution based on catch data 

 

The most comprehensive historic review of patterns of NEP white shark distribution 

based on catch data is provided by Klimley (1985), who analyzed catch records from 

1936 to 1984 over a broad size range. The catch records included 70 individuals that were 

less than 300 cm TL, providing insights into early life history. YOY white sharks were 

caught south of Point Conception (with one exception), whereas juveniles were caught 

both north and south of Point Conception. Given the distribution of YOY and the fact that 

adult white sharks were most frequently sighted and caught off central and northern 

California, Klimley (1985) hypothesized that the southern California Bight was a nursery 

for white sharks. A second more recent analysis of fishery interactions in Southern 

California between 1936 and 2009 examined catch data for 143 YOY and 77 juveniles 

and found a similar spatial pattern in YOY and juvenile distribution (Lowe et al. 2012). 

Both analyses also provide insight into temporal patterns. YOY first appear in incidental 

catch records in April, with an increase by June and a peak in August (Figure 2.1) 

(Klimley 1985, Domeier 2012, Lowe et al. 2012). Both YOY and juvenile white sharks 

are caught predominantly in near shore waters (<50m depth), and most commonly by 

entangling net fisheries (e.g., set and drift gillnets) (Klimley 1985, Lowe et al. 2012).  
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Figure 2.1 Seasonal pulse of YOY white sharks incidentally captured and landed in the set gillnet 

fishery, based on California Department of Fish and Wildlife (CDFW) set gillnet data for 1980 - 2000 

(Figure 16.2 from Domeier, 2012).  White sharks were landed in Santa Barbara (SB) (green bars), 

Los Angeles (LA) (blue bars) and San Diego (SD) (red bars).  Light blue bars are from Klimley 

(1985) for which capture location data were missing. Set-gillnet fishing effort was plotted by month 

(purple line).  The number of YOY caught per 1000 set gillnet fishing days are also shown (orange 

line). 

 

Juvenile and YOY white sharks have also been incidentally caught on the Pacific side of 

the Baja California peninsula, Mexico, also in near-shore habitats. Santana-Morales et al. 

(2012) compiled data from (1) surveys of artisanal-fishing camps, (2) surveys at sites 

where carcasses are discarded, (3) log books from a commercial drift gillnet vessel, and 

(4) observations onboard a commercial drift gillnet vessel, mostly from the northern and 

central portions of the Baja Peninsula. Between 1999 and 2010, 111 juvenile and YOY 

white sharks (ranging from 123 to 274 cm TL) were reported to have been incidentally 

caught along the Pacific coast of Baja California.  Of these, 60% were caught near 

Sebastián Vizcaíno Bay, and 80% were YOY (Santana-Morales et al. 2012).  Seasonal 

patterns of occurrence were similar to those observed in the southern California Bight 

with a peak in white shark catch in the spring and summer.  

 

Additional catch data come from the Gulf of California. Incidental catch of 14 juveniles 

has been documented within the Gulf of California between 1981 and 2007. None of 

these were estimated to be YOY (Galván-Magaña et al. 2010) and to date only one YOY 

has been documented from the Gulf of California (O. Sosa-Nishizaki, Centro de 

Investigación Científica y de Educación Superior de Ensenada (CICESE), pers. comm.). 

The data for the Gulf of California came from (1) records from local newspapers; (2) 

white shark sightings made by scientists and reliable divers; and (3) shark parts or 

photographs examined by the authors.    
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2.2.1.2. Distribution information from electronic tagging data 

 

In recent years, more detailed information on the movements of individual sharks has 

been obtained from electronic tags. The satellite tags used on YOY and juveniles are both 

the pop-up satellite archival tags (PSAT) and the Smart Position and Temperature 

(SPOT) tags (Wildlife Computers Redmond, WA). PSAT tags remain attached for a 

programmed period of time after which they release and transmit logged data to satellite. 

SPOT tags are generally attached to the dorsal fin and transmit to the satellites when the 

shark is at the surface. Similar to the catch data, a number of tagging studies reported that 

YOY stayed between Point Conception and Sebastián Vizcaíno Bay, while a 3-year old 

juvenile moved north to Point Reyes (Dewar et al. 2004, Weng et al. 2007b, Weng et al. 

2012). The YOY showed seasonal movements within the apparent nursery region. Weng 

et al. (2007b) found that while YOY white sharks were in near shore waters off 

California in the summer, in the autumn months (October and November) they travelled 

south along the coast of Baja to Ensenada and Sebastián Vizcaíno Bay. It should be noted 

that tags were only deployed in the southern California Bight and only recorded data for 

1-2 months; longer deployments may reveal more extensive movements. Weng et al. 

(2012) also released 5 tagged YOY and juveniles following a period of captivity at the 

Monterey Bay Aquarium (sizes at release were 137, 166, 176, 184, and 187 cm TL). 

These sharks were tracked for up to 4 months and travelled as far south as Cabo San 

Lucas and into the Gulf of California, Mexico.  

 

2.2.1.3. Summary of information on YOY and juvenile distributions 

 
Based on catch and electronic tagging data, YOY and juvenile white sharks in the NEP are found 

are found along the continental shelf in the near shore regions of Southern California, the Pacific 

Pacific coast of Baja, and into the Gulf of California ( 

Figure 2.2). YOY are documented primarily from Point Conception to Sebastián 

Vizcaíno Bay and exhibit a north-south seasonal movement in this region. This appears to 

be the key nursery region, within which there are likely preferred areas including the 

Ventura Flats (south of Santa Barbara, CA), Santa Monica Bay,  San Pedro Shelf (south 

of Long Beach, CA) and Sebastián Vizcaíno Bay (offshore of Guerrero Negro, Baja 

California Sur). These areas all have a broad continental shelf.  The range of juveniles 

extends both north of Point Conception and into the Gulf of California.  Additional data 

are needed in the Gulf of California and along the southern Baja Peninsula to better 

define the differences in habitat use between YOY and juveniles. 
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Figure 2.2 Distribution of YOY and juvenile white sharks in the northeastern Pacific Ocean.  

Young-of-the-year (YOY) white sharks are found in the nursery region (yellow) located from 

southern California to northern Baja California with several hot spots including Ventura Flats, San 

Pedro Shelf , Santa Monica Bay and Sebastián Vizcaíno Bay (red stars from north to south). Tagging 

data of YOY and juveniles in southern California have shown movements within this nursery region, 

with YOY in California waters during summer months and in northern Baja California in the fall 

and winter months, as well as movement by juveniles into the Gulf of California (pink arrows). Older 

juveniles and subadults begin to exploit habitats north of Point Conception (blue arrow). (Figure 

16.10 from Domeier, 2012) 

 

2.2.2. Subadults and adults 

 

2.2.2.1. Distribution based on catch, sightings and attacks data 

 

Insights into the range of white sharks and historical distribution of subadults and adults 

in the NEP are obtained from tagging and catch data as well as attacks on humans and 

marine mammals, strandings, and sightings. Again, Klimley (1985) provides the most 

comprehensive historic review of patterns in adult and subadult distribution. Between 

1936 and 1984 along the west coast of North America, subadults and adults were caught 

predominantly north of Point Conception with the largest concentration being found off 

central California from Tomales Point to Monterey Bay (Klimley 1985) in regions also 

known for pinniped rookeries. The majority of attacks on humans and pinnipeds also 

occurred within these same regions of the coast, as well as in river mouths and harbors 

(McCosker and Lea 1996).  In California, 14 mature white sharks greater than 460 cm TL 

were reported caught between 1959 and 1984 (9 female, 2 male, 3 unknown). Because a 

higher percentage of females were caught south of Point Conception than north, Klimley 

(1985) hypothesized that the females travelled south of Point Conception to give birth, 

consistent with the hypothesis that the area south of Point Conception is a nursery region.  
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An examination of attack data provides some insight into seasonal trends. Results from a 

number of studies reveal that attacks on both humans and marine mammals have been 

documented in all months indicating the presence of large sharks along the coast year 

around (Ainley et al. 1985, McCosker and Lea 1996). Patterns in attacks on marine 

mammals suggest an apparent seasonal shift in prey.  Most predatory events closer to 

shore on harbor seals were reported to peak in June (Ainley et al. 1985), whereas 

predatory events for all pinnipeds were reported to peak in August (Long et al. 1996). At 

Southeast Farallon Island, the majority of predatory events are observed between 

September and November (Klimley et al. 1992).   

 

While Klimley (1985) reported on records as far north as the southern end of Queen 

Charlotte Island off the Alaskan coast, the most comprehensive review of patterns at the 

northern extent of the white shark range comes from Martin (2004) (Figure 2.3). Between 

1961 and 2004, there were 29 documented sightings, captures, and strandings of subadult 

and adult white sharks of both sexes in British Columbia and Alaska, most frequently in 

summer and autumn months (Martin 2004). Martin (2004) found that El Niño events did 

not have an impact on the frequency of white shark sightings, captures, and strandings in 

these areas, and that there was no discernible trend over the years. In the most recent year 

of the study (2004), four individuals were reported.  

 

The southern extent of the range of NEP white sharks along the North American coast 

appears to be Mexico (Figure 2.3). The presence of subadult and adult white sharks has 

been documented as sightings and incidental catch within the Gulf of California (Galván-

Magaña et al. 2010, Castro 2012). Between 1964 and 2012, Galván-Magaña et al. (2010), 

Castro (2012) and M. Domeier (Marine Conservation Science Institute (MCSI), pers. 

comm.) documented the killing of 8 mature white sharks in the Gulf of California (TL 

estimated between 450 and 600 cm) and 10 subadults (TL estimated between 300 and 

400 cm). Galván-Magaña et al. (2010) noted that adults were most common within the 

Gulf of California from December to May and were less common from June to October. 

Beginning in the late 1990s, subadult and adult white sharks were observed in increasing 

numbers near Guadalupe Island, Mexico. While white sharks had been observed 

infrequently at Guadalupe Island prior to this time, the island has been a popular stop for 

sport fishing vessels for decades, by the early 2000s their occurrence was predictable 

enough in late summer and autumn months to support a new a cage diving industry. 
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Figure 2.3. Known range of white sharks in the NEP. White sharks have been found as far north as 

Alaska, as far south as Mexico and as far west as the Hawaiian Islands. Data sources are from 

Klimley 1985, Martin 2004, Weng et al. 2007, Domeier and Nasby-lucas 2008, Galván-Magaña et al. 

2010,  Jorgensen et al. 2010, Domeier 2012.  

 

The western extent of the white shark range in the NEP appears to be the Northwest 

Hawaiian Islands (Figure 2.3). White shark teeth are found in Hawaiian artifacts 

revealing a historic occurrence at the islands. However, white sharks are rarely caught or 

observed around the Hawaiian Islands. From 1926 to 2011 there were 14 confirmed 

observations of white sharks ranging from 3.3 to 4.5 m TL (Taylor 1985, Weng and 

Honebrink 2013). The fact that no YOY or juveniles sharks were caught indicates that 

Hawaii is probably not a nursery ground for white sharks. Additional insights into 

movements around Hawaii come from the electronic tagging data discussed below.  

 

While white sharks have a broad distribution in the NEP, as in most oceans, the majority 

of adult white shark activity is observed near coastal sites and islands that serve as 

pinniped rookeries. In the NEP, Southeast Farallon Island has been one of the most 

predictable sites for observing white sharks. Southeast Farallon Island serves as a rookery 

for a number of different pinniped species including northern elephant seals (Mirounga 
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angustirostris), California sea lions (Zalophus californianus), northern fur seals 

(Callorhinus ursinus), Steller sea lions (Eumetopias jubatus), and harbor seals (Phoca 

vitulina). Other nearby sites where white sharks have been predictably observed include 

Tomales Point, Point Reyes and Año Nuevo Island (Klimley 1985, Jorgensen et al. 

2010).  Farther to the south, Guadalupe Island has more recently become an important 

aggregation site. The majority of white shark research in the NEP focuses on adults and 

subadults visiting these coastal aggregation sites.  

 

2.2.2.2. Photo-Identification data 

 

The consistent presence of adult and subadult white sharks at near shore aggregations 

sites has provided the opportunity for conducting photo-identification (photo-ID) studies. 

Photo-ID studies provide a valuable tool for studying the biology of adult and subadult 

white sharks for which limited fisheries data are available. White sharks are a good 

candidate for this approach given the ability to easily identify individual sharks using 

unique characteristics, and their propensity for repeat visits to near-shore locations where 

they can be photographed and identified (Cailliet 1996). Studies conducted to date at both 

central California and Guadalupe Island, Mexico have provided valuable data on 

demographics, clues to maximum age, visitation patterns over the time-series and 

regional abundance (Anderson et al. 2011, Chapple et al. 2011, Nasby-Lucas and 

Domeier 2012).  

 

Concerns have been expressed regarding the violation of model assumptions when using 

photo-ID to estimate population sizes (Marshall and Pierce 2012, Delaney et al. 2012, 

Sosa et al. 2012) and some suggest that results are better used as an index of abundance 

(Sosa et al. 2012). Noted limitations include the potential for losing or changing marks 

over time (Marshall and Pierce 2012) and missing individuals that are actually at the site 

but not photographed (Delaney et al. 2012).  Delaney compared acoustic data and photo-

ID data and found that photo-ID had the lowest probability of detection. There are 

additional factors that violate the assumption of an equal probability of sighting such as 

dominance patterns where subordinate are less likely to approach the surface for 

photographing (Klimley 1994, Goldman and Anderson 1999, Sperone et al. 2010) and 

where sharks avoid baits and decoys once they learn that it does not lead to a food reward 

(Laroche et al. 2007). In addition, not all sharks in a given population may visit the study 

sites. The accuracy with which photo-ID studies estimate actual abundance will become 

clearer as more studies comparing methods become available. 

 

Central California:  

A photo-ID study was initiated at Southeast Farallon Island in 1987 (Anderson et al. 

1996). In 1998, the study was expanded to include coastal areas near Tomales Point. 

High-resolution photographs and video were taken of each shark for comparison of dorsal 

fins. Only images with sufficient quality (based on angle, size, focus, and contrast) were 

added to the database. The data indicated that the same individuals return to the area in 

subsequent years, with males typically returning on an annual basis and females on a 

semi-annual basis (Anderson and Pyle 2003, Anderson et al. 2011). In this study a total of 

364 individual dorsal fins were photographed between 1987 and 2008 and nearly twice as 



 

20 

many confirmed males were sighted as confirmed females (Females:Males = 1:1.8). This 

ratio however may be biased because it is easier to confirm the presence of claspers than 

the absence. One male has been identified at Southeast Farallon Island over a period of 

22 years (Anderson et al. 2011). A subset of the photo-ID data collected at the Southeast 

Farallon Island and Tomales Point (2006-2008) were used in the study by Chapple et al. 

(2011) to estimate white shark abundance for central California. Sex and size data from 

this study are provided in Section 4.4.2. The BRT used these data from Chapple et al. 

(2011) to estimate abundance, sex ratio and size composition.  

 

Guadalupe Island:  

A photo-ID study was also initiated at Guadalupe Island in 2003 (including data from 

2001 and 2002). This study used underwater photos and video taken by caged divers, 

beginning in 2001, from a protected anchorage at the northeastern corner of the island 

(Guadalupe Island is 41 km north/south and 15 km east/west). Sharks were identified by 

pigment patterns in the gill, pelvic fin and caudal fin region, along with dorsal fin 

notches. A shark was definitively identified once reference photos of both the left and 

right side were collected. As of 2011, the database consisted of 142 individual sharks. A 

recent abundance estimate is provided in Section 4.4.2.  

 

Photo-ID has provided important insights into the demographics and dynamics of white 

sharks visiting Guadalupe Island. The overall sex ratio for sharks in the database was 

1:1.6 (Females:Males).  As in the central California region, adult males return annually 

and several males have been seen at Guadalupe Island every year since 2001. Most 

females, return semi-annually, being sighted every other year, whereas some return in 

consecutive years (Domeier and Nasby-Lucas 2007, Nasby-Lucas and Domeier 2012). 

White sharks are present at Guadalupe Island between late July and December (although 

effort past December was minimal over the study period) with differences in the arrival 

of males and females. Males arrive in late July to early August and sightings peak in late 

August and early September whereas females arrive September to October and sightings 

peak in November (Figure 2.4). As a result of the variation in arrival times, the sex ratio 

changes throughout the season. As with the data from Chapple et al. (2011), all 

Guadalupe Island photo-ID data were used by the BRT to estimate abundance, sex ratios 

and trends.  
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Figure 2.4 Average number of sharks sighted by week at Guadalupe Island adjusted by weekly 

sighting effort. Blue indicates male, pink indicates female, and the black line shows average number 

of days of effort for that week over all years of data (Figure 25.3 from Nasby-Lucas and Domeier 

2012). 

 

2.2.2.3. Electronic tagging data 

 

The development of satellite technologies has dramatically expanded our understanding 

of habitat use and distribution of subadult and adult white sharks. PSAT and SPOT tags 

have been used to track the movements of adult and subadult white sharks at both 

Southeast Farallon Island and Guadalupe Island. The PSAT tags can be deployed without 

handling the animal but the light and sea surface temperature-based geolocation estimates 

necessary to create an actual track, specifically for latitude, have large errors. Error 

estimates calculated by Teo et al. (2004) for latitude ranged from 1.16 to 1.89o ( >100 

km). In addition, tracks typically span less than 12 months. For SPOT tags, sharks must 

be restrained to attach the tags but the position estimates are more accurate (ranging from 

100s of m to several km (Patterson et al. 2010), and tracks spanning greater than one year 

are more common. 

 

Studies using PSAT tags have shown that sharks from both central California and 

Guadalupe Island make long range migrations to the middle of the NEP (Boustany et al. 

2002, Weng et al. 2007a, Domeier and Nasby-Lucas 2008). Some sharks move as far 

west as Hawaii (22% of tagged sharks from central California (Jorgensen et al. 2010) and 

12% of tagged sharks from Guadalupe Island (Domeier and Nasby-Lucas 2008)).   

 

Sharks from both central California and Guadalupe Island were found to travel to the 

same general offshore focal area and then return to the original area where they were 

tagged (Weng et al. 2007a, Domeier and Nasby-Lucas 2008, Jorgensen et al. 2010) 

(Figure 2.5). This offshore focal area has been termed the white shark “Café” or the 

Shared Offshore Foraging Area (SOFA) by the different research groups based on the 
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presumed role for the region. However, there is still a lack of consensus on the role of the 

offshore migrations, and whether this serves as a period of foraging or mating, as 

discussed below (Domeier 2012, Jorgensen et al. 2012a). Consequently the more neutral 

term "offshore focal area" is used here.  

Figure 2.5 PSAT tracking data for white sharks tagged at the Farallon Islands (A) from Jorgensen et 

al. 2010, and at Guadalupe Island (B) from Domeier and Nasby-Lucas 2008. Satellite tag end points 

are indicated by (A) red circles and (B) larger bold circles.  The remaining geolocation estimates 

were calculated using light data. The spread in the points reflects some uncertainty associated with 

errors in latitude estimates.  

A

B
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The tagging data provide greater detail than the sightings data mentioned above, and 

confirm that the two aggregation sites show different temporal patterns of occupancy. 

Sharks from central California depart for offshore areas earlier than those at Guadalupe 

Island. Sharks from Southeast Farallon Island began their offshore migrations between 

mid-November and the end of March (Weng et al. 2007a) and sharks from Guadalupe 

Island left between late December and early May (Domeier and Nasby-Lucas 2008). At 

Guadalupe Island, the return to coastal aggregation sites is staggered with males arriving 

in late July to early August and females arriving from mid-September to early October. 

Acoustic data should provide insight as to whether the same pattern occurs at central 

California. Consistent with the photo-ID observations (Anderson and Pyle 2003, Nasby-

Lucas and Domeier 2012), satellite tagged males from both regions have a 1-year 

migration cycle (Weng et al. 2007a, Domeier and Nasby-Lucas 2008). Because the PSAT 

tags typically only last for 12 months or less, the semi-annual pattern of occupancy 

(returning every other year) apparent for females in the photo-ID data (Anderson and 

Pyle 2003, Nasby-Lucas and Domeier 2012) cannot be examined using this technology.  

 

The long-term movement patterns of females tagged at Guadalupe Island have been 

documented using SPOT tags for which deployment durations greater than 2 years are 

not uncommon. Results confirm that females typically do not return to aggregations sites 

on a yearly cycle (Domeier and Nasby-Lucas 2012). Mature females remain offshore for 

around 15 months, which is presumed to be associated with an 18 month gestation cycle 

(Domeier and Nasby-Lucas 2012). Following 15 months offshore, four females were 

tracked to the coast between the months of April and August (Figure 2.6). This time 

period corresponds with the seasonal presence of YOY and suggests that these females 

travelled to the coast to give birth. Two of the females were tracked into the Gulf of 

California (April through July) and 2 were tracked to the Pacific coast of Baja California, 

Mexico, near Sebastián Vizcaíno Bay (June through August) (Domeier and Nasby-Lucas 

2013).  Three of the four females then returned to Guadalupe Island in late September to 

early October, after the males would have returned (the fourth tag stopped transmitting 

once the shark exited the Gulf of California and she has not since been resighted at 

Guadalupe Island).  
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Figure 2.6  Coastal location data for four SPOT-tagged Guadalupe Island female white sharks 

during the pupping season following 15 months offshore. Location data for each shark is indicated by 

shape (shark1: triangle; shark 2: square; shark 3: circle; and shark 4: diamond) and by color for 

each month. (Figure 2 from Domeier and Nasby-Lucas, 2013). 

 

Using the results from both tag types and both aggregation sites provides some insight 

into the overlap between males and females in the offshore focal area. There appears to 

be sexual segregation, with males from both regions consistently using the relatively 

confined offshore focal area (Figure 2.7a) while females cover a larger pelagic realm and 

spend less time in the offshore focal area (Figure 2.7b) (Jorgensen et al. 2010, Domeier 

and Nasby-Lucas 2012) resulting in limited overlap in offshore waters (Figure 2.8).  For 

example, one tagged adult female white shark spent 8 months at least 600 km to the east 

of the core offshore focal area (i.e., the 50% density contour of the offshore area used by 

males, Domeier and Nasby-Lucas 2012) and only moved further to the west once the 

males had returned to Guadalupe Island. 
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Figure 2.7 Multi-year tracks from (A) eight SPOT-tagged male white sharks tagged at Guadalupe 

Island and the Farallon Islands and (B) four females SPOT-tagged at Guadalupe Island. The white 

contour represents the 50% density contour, or “core,” for the offshore focal area used by adult 

males (Domeier and Nasby-Lucas 2012). 

 

 

A 

B 
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Figure 2.8 Comparison of temporal overlap while in the offshore focal area and at the coastal 

aggregation site for male and female white sharks tagged at Guadalupe Island Percentage of hits for 

SPOT tagged males and females that were at the coastal aggregation sites (top panel) or within the 

50% density contour of the offshore focal area (bottom), calculated by month for each year. Males 

are colored blue and females are dark red (Domeier and Nasby-Lucas 2012).  

  

The debate about the habitat function of both the offshore focal area and the coastal 

aggregation sites centers around whether the areas are used primarily for foraging or 

mating (Nasby-Lucas et al. 2009, Jorgensen et al. 2010, Domeier 2012, Jorgensen et al. 

2012a, Domeier and Nasby-Lucas 2013). 

 

The following observations support the view that the offshore focal area serves as a 

mating area (Jorgensen et al. 2010, 2012)  

1) Jorgensen et al. (2012a) identified a unique dive pattern in the offshore focal area 

and proposed that the vertical and geographic movements supported a lek-style 

mating strategy with both sexes aggregating to facilitate female mate choice. The 

unique dive pattern is different from what would be consistent with feeding on the 

deep scattering layer, is dominant in the core of the offshore focal area, and 

increases at the time when mating is proposed to occur. 

2) Carlisle et al. (2012) report that foraging is limited in the focal area, contributing 

about 25% of an individual’s total dietary input based on isotope data.  

3) Mating scars are rarely seen at the central California coastal aggregation sites and 

any seen are considered to be partially healed and having not occurred at the 

coastal aggregation sites.  

4) No mating behavior has ever been observed at the central California coastal 

aggregation sites.  

5) The coastal aggregation sites are thought to be productive foraging areas with 

energy rich prey indicating its potential as a foraging site, not that foraging and 

mating are mutually exclusive. 
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The following observations support the view that the coastal aggregation sites serve as a 

mating area (Domeier 2012, Domeier and Nasby-Lucas 2013): 

1) No mating behavior has been observed at Guadalupe Island, but wounds around 

the head and gills are frequently observed on females at Guadalupe Island just 

prior to the beginning of the 2-year migration cycle for females. This suggests that 

the wounds are linked to mating activity and that the wounds are obtained prior to 

their movement offshore.  

2) During the 2-year migration cycle for females, some females that were presumed 

to have been pregnant, avoided the offshore focal area after leaving Guadalupe 

Island and prior to visiting the nursery grounds.   

3) The presence of seminal fluid was documented in the claspers of three males at 

Guadalupe Island and two males tagged at the central California coastal 

aggregation sites.  

4) In one location off New Zealand, mating behavior was observed at a coastal 

aggregation site (Francis 1996) although this was in the spring rather than the fall 

or winter.  

5) The offshore focal area has an abundance of squid and possibly other squid 

predators (i.e., potential prey for white sharks), indicating its potential as a 

foraging site, not that foraging and mating are mutually exclusive (Domeier et al. 

2012).   

6) The density of males and females is highest at the coastal aggregation sites. 

Increased density should enhance mating success. In the offshore focal area the 

50% quartile covers an area with a radius of 250 km encompassing ~200,000 km2. 

7) White sharks depart the NEP coastal aggregation areas prior to the timing of peak 

pinniped use and breeding. This seems counterintuitive if these areas are primarily 

used for feeding on pinnipeds. 

 

Given that the gestation period is not known, working back from the pupping period to 

estimate the timing of mating is not helpful. A gestation period of 15 months places 

mating in the offshore focal area, whereas a gestation period of 18 months places mating 

at the coastal aggregation sites (Domeier 2012). Therefore, additional information is 

needed to definitively determine when and where white sharks are mating. Understanding 

reproductive patterns is important for characterizing habitat use, better understanding the 

stock structure of the NEP white shark population, and examining whether there are 

significant subunits within that population.  

 

2.2.2.4. Passive acoustic tracking 

 

To complement the data obtained from the PSAT tags, researchers in central California 

used an acoustic array to document the coastal movements of white sharks in and around 

coastal aggregation sites. Acoustic tracking data for white sharks tagged in central 

California showed that upon their return to the coast following their offshore migration, 

tagged white sharks were detected by receivers at a number of central California 

locations. Movements between the different listening stations varied but occurred 

between all coastal aggregation sites. Four of these listening stations accounted for a 

disproportionately high number of detections during the coastal aggregation phase 
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(approximately Aug through February), revealing a preference for a limited number of 

key hotspots (Figure 2.9). Some sharks showed a distinct preference for certain sites.  

  

  
Figure 2.9 Detections of white sharks tagged with acoustic transmitters along the central California 

coast, with receiver locations scaled in size by the mean residence time of all individuals detected at 

that location (number of days in text). From north to south, the receiver locations include: Tomales 

Point (TOM; green), Point Reyes (REY; yellow), South East Farallon Island (SEFI; orange), and Año 

Nuevo Island (ANI; red). Lines connecting locations are scaled in thickness relative to the number of 

transits between adjoining sites. (Figure from Jorgensen et al., 2010; caption modified) 

 
 

Despite their long-range migration patterns, satellite tagged white sharks from central 

California have not been tracked to Guadalupe Island, or vice versa. However, a female 

white shark SPOT tagged at Guadalupe Island migrated offshore and returned back to the 

coast to an area just off Point Conception (M. Domeier, MCSI, pers. comm.). In addition, 

out of 110 acoustic tags deployed at central California and 31 at Guadalupe Island, two 

white sharks from central California have been detected at Guadalupe Island and one 

Guadalupe Island white shark was detected on the central California coast ((Jorgensen et 

al. 2012b); S. Jorgensen, Monterey Bay Aquarium (MBA), pers. comm.).  In addition, 

10% of acoustically tagged sharks from central California have been detected at receivers 

located around Hawaii.  

 

 

2.2.3. Overall distribution patterns 

 

Diverse data sources, new and old, provide an overall picture of the distribution of white 

sharks in the NEP. The more recent efforts using electronic tagging technology and 

photo-ID complement previous work focusing largely on catch data and provide a clearer 

picture of temporal and spatial patterns in movements, especially for those sharks that are 

found at Guadalupe Island, Southeast Farallon Island and Tomales Point. The range of 

white sharks appears to be bounded by Mexico to the south, Alaska to the north, the coast 

of North America to the east and the Hawaiian Islands to the west (Figure 2.3). YOY and 

juvenile white sharks are restricted primarily to the coastal regions from Mexico to 

central California remaining largely over the continental shelf. As they make the 

transition from juveniles to subadults (at about 3 m TL in size), their diet expands to 

include marine mammals and their subsequent distribution in near shore waters is 
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strongly influenced by the distribution of their new prey. Also at around this size, white 

sharks also begin making large-scale, seasonal offshore migrations that differ for males 

and females. Most males move to the offshore focal area in the winter and spring where 

they remain until the following summer when they return to the near shore coast. 

Females, on the other hand, are more dispersed while offshore and arrive later at the 

coastal aggregation sites. Some adult females return the following year while others 

return to the coastal aggregation sites every other year after spending ~15 months 

offshore. Females appear to pup off of California or Mexico between April and August.  

 

While the new tagging technologies and studies conducted at Guadalupe Island and off 

central California have provided a wealth of information about the movements and 

distributions of subadult and adult white sharks in the NEP, the picture is likely more 

complex. Deploying electronic tags only at aggregation sites may bias results, since 

individuals that might use other areas would not be available for tagging. Several gaps in 

our understanding have yet to be addressed.  These include: 

 

1) Recent data using isotopes to characterize diet across life history phases suggest 

that not all white sharks make the transition to marine mammal prey as adults and 

consequently would not necessarily be found at coastal aggregation sites, which 

are associated with pinniped rookeries (Kim et al. 2012).  

2) In addition, there are white sharks documented in all months along the coast 

(Ainley et al. 1985, Klimley 1985) when the tagging data would indicate they 

should be offshore. Of the white sharks that have been tagged, very few seem to 

stay in or return to coastal waters during the offshore migratory phase (Jorgensen 

et al. 2010, N. Nasby-Lucas, MCSI, pers. comm.). This suggests that there may be 

a subset of the white shark population that remains near the coast during the 

offshore migratory phase. If these sharks do not visit the aggregation sites when 

tagging occurs, this pattern would not be documented.  

3) Subadults appear to be underrepresented at the coastal aggregation sites (Section 

4.4.2). These smaller sharks can be displaced by larger sharks and are sometimes 

observed at the aggregation sites before or after the peak fall season (Goldman 

and Anderson 1999, Sperone et al. 2010, Domeier 2012). Smaller sharks may use 

different areas due to a dominance hierarchy.  

4) There are also white sharks observed far away from known coastal aggregations, 

in areas off California, Oregon, Washington, Mexico, Canada and Alaska 

(Klimley 1985, Martin 2004). Where these sharks fit into the overall picture 

remains to be determined.  

5) Due largely to weather patterns, the majority of tagging efforts and observations 

both at Guadalupe Island and along the central California coast occurs in the fall. 

Thus, white sharks that may arrive later in the year would be underrepresented in 

the tagging and photo-ID studies.  

6) The use of PSAT tags at central California limits tracks to a year or less. 

Consequently, there are no long-term tracking data (>12 months) for mature 

female white sharks off central California, and the full scope of their movements 

and reproductive patterns is not known.  
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2.3. Inferences on stock structure and population size using genetic data 

 

In addition to the tagging data, genetic data also provide insights into stock structure and 

connectivity among groups along with estimates of historical abundance. Mitochondrial 

DNA (mtDNA) from white sharks sampled in central California and compared with 

white sharks from South Africa and Australia/New Zealand showed strong clustering of 

the California sharks with those from Australia/New Zealand. Furthermore, the data show 

that the California sharks form a unique monophyletic clade (i.e., a group developed from 

a single common ancestral form) of relatively recently derived lineages (Figure 2.10). It 

has been hypothesized that the NEP population was founded by Australia/New Zealand 

migrants during the Late Pleistocene (~150,000 years ago (150 kya)) and that subsequent 

strong homing behavior and reproductive site fidelity has maintained the separation of the 

population (Jorgensen et al. 2010). More recent analyses of mtDNA of only 7 white 

sharks caught off Japan suggests that Japanese white sharks also form a monophyletic 

clade and are separate from the populations off central California, Australia/New Zealand 

and South Africa (Tanaka et al. 2011).  

 

The patterns of genetic diversity (short branch lengths between multiple closely related 

haplotypes) suggest a rapid demographic expansion upon colonization of the NEP 

(Figure 2.10).  Though the overall sample size for which genetic data are available is 

relatively low in all regions (California: n = 59; South Africa: n = 43; and Australia/New 

Zealand: n = 52), the observation that the NEP lineage is monophyletic and that no shared 

haplotypes have been observed between regions strongly supports that the NEP is 

genetically distinct from the other studied regions (i.e., there are no South Africa or 

Australia haplotypes in the California group and no California haplotypes in the South 

Africa /Australia groups; Figure 2.10).  However, as only mitochondrial data are 

presently available and this locus is inherited maternally, these results only represent 

genetic patterns attributed to female behavior (Pardini et al. 2001). The future application 

of nuclear DNA markers will help us understand whether male-mediated gene flow 

follows similar patterns.     
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Figure 2.10 Phylogeny of unique haplotypes found in Indo-Pacific white sharks inferred from 

comparisons of mitochondrial DNA control region sequences (1109 base pairs) of 59 individuals from 

the central California coast with previously published sequences from South Africa (SA) and 

Australia/New Zealand (AU/NZ). Bayesian tree branch lengths reflect substitutions per site. The 

number of samples comprising each haplotype is given in parentheses if greater than 1. GenBank 

accession numbers are indicated for each haplotype followed by the location of the sample. Bayesian 

posterior probabilities are indicated above nodes while likelihood bootstrap values are shown below. 

NEP sharks from California (CA) form a monophyletic clade (bootstrap =58%, Bayesian posterior 

probability = 60%). Individuals from the two dominant lineages within this clade had similar 

migratory patterns. (Figure from Jorgensen et al., 2010) 
 

 

The number of haplotypes expected in a given population depends, among other things, 

on the effective population size.   For populations that are naturally at low abundance, the 

number of haplotypes is expected to be low and normally there would be no truly rare 

haplotypes (defined here as haplotypes found at frequencies equal to or less than 5%). As 

an example, for shark and cetacean populations with 1-5 haplotypes, the abundance of 

females in the population is in the low hundreds or less (Table 2.2). Higher haplotypic 

diversity is consistent with a population that is currently large or a population that was 

larger but suffered a dramatic population decline (>90%) in the last few generations 

(Hoelzel et al. 1993). After only a few generations genetic drift will reduce haplotypic 

diversity.  

 

This relationship gives some context to the pattern of haplotypes observed in NEP white 

sharks. The number of haplotypes (n=20 from 59 individuals, Jorgensen et al. 2010) and 

the number of low frequency haplotypes for central California (n=18 of 20 haplotypes) 

are both high. It should be noted that five of the 20 haplotypes reported in Jorgensen et al. 

(2010) contained at least one ambiguous nucleotide and of these, two haplotypes were 

differentiated from other haplotypes solely by an ambiguity.  Therefore, the true number 

of haplotypes from this study may be 15-18. This, however, is still relatively high.  
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The haplotypic diversity for white sharks and other species are shown in Table 2.2. 

Haplotypic diversity was characterized as the proportion of rare haplotypes among the 

haplotypes sampled, where ‘rare’ is defined as occurring in equal to or less than 5% of 

the sampled individuals. For direct comparison to other available white shark data 

(Blower et al. 2012) and to resolve many of these ambiguities, the data from Jorgensen et 

al. (2010) was trimmed to 842bp in length and the two haplotypes defined solely by an 

ambiguity were removed. This reduced the total number of haplotypes to 9 with 66.7% of 

the haplotypes being rare.  For comparison to NEP white sharks, species were chosen that 

were long-lived, slow reproducers and not characterized by strong social structure.  The 

haplotypic diversity of NEP white sharks is within the range of species where populations 

of adult females are in the high hundreds to low 1000s. This suggests that either a greater 

number of animals exist than are accounted for in current samples or that white sharks 

recently suffered a dramatic decline. The potential for a recent population decline is 

addressed by the BRT in Section 4.3 and Appendix B to determine whether the 

haplotypic diversity could be used to inform the current population size of NEP white 

sharks.  

 
Table 2.2 Comparison of the haplotypic diversity for a range of long-lived and slow reproducing 

species. Abundance categories for all life stages were defined as low (in the low thousands or less), 

medium (in the low tens of thousands), and high (greater than the low tens of thousands).  The term 

‘rare’ is defined as occurring in equal to or less than 5% of the sampled individuals. Adult female 

abundance was extrapolated based upon life history parameters and predicted to be roughly 25% of 

the total population for each species. Listed are the relative level of abundance, n = sample size, #hap 

= number of haplotypes, %n rare = number of samples with rare haplotypes/ number of samples, 

%hap rare = number of rare haplotypes/ number of haplotypes. Abbreviations used in the table are: 

NEP (northeastern Pacific), BCB (Bering-Chukchi-Beaufort). 

Abundance 

category 

Population n #hap %n 

rare 

%hap 

rare 

Notes on total abundance and 

adult female abundance levels 

Low vaquita 

(Phocoena sinus) 

43 1 0.0 0.0 Total abundance naturally in low 

1000s, adult females naturally in 

high 100s 

Low Okhotsk bowhead 

whales (Balaena 

mysticetus) 

20 4 5.0 25.0 Total abundance naturally in low 

1000s, reduced to 100s, some gene 

flow possible.  Adult females 

naturally in high 100s 

Low North Atlantic 

right whales 

(Eubalaena 

japonica) 

430 5 1.2 20.0 Total abundance reduced to low 

100s many generations ago. Adult 

females likely <100. 

Low East Australian 

sandtiger shark 

(Carcharias 

Taurus) 

65 1 0 0 Total abundance less than 500 

individuals.  Adult females likely 

<100. Probable decrease of 80-90% 

in the past 40 years (Ahonen et al. 

2009) 

Medium Eastern gray 

whales 

(Eschrichtius 

robustus) 

103 32 58.3 84.4 Total abundance reduced a few 

generations ago but quickly 

recovered to about 20,000. Adult 

females likely in mid 1000s. 

Medium NEP blue whales 

(Balaenoptera 

musculus) 

50 13 22.0 61.5 Total abundance reduced a few 

generations ago probably from low 

10,000s but recovered to low 1000s. 

Adult females likely reduced from 
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high 1000s to high 100s 

Medium BCB bowheads 

(Balaena 

mysticetus) 

343 68 69.4 97.1 Total abundance reduced from 

10,000s to low 1000s a few 

generations ago but recovered to 

over 10,000.  Adult females likely 

in low 1000s. 

Medium S Africa sandtiger 

shark 

77 5 6.5 40 Total abundance likely stable in the 

10,000s.  Adult females likely in 

high 1000s (Ahonen et al. 2009, 

Dicken 2006) 

High Antarctic blue 

whales 

78 36 53.8 80.6 Total abundance reduced from 

100,000s to 100s a few generations 

ago. 

High NEP mako shark 382 35 30.9 88.6 Unknown population size or history 

but considerably larger than white 

shark population size.  (Michaud et 

al. in prep) 

High SWP mako shark 66 23 40.9 78.3 Unknown population size presently 

or historically but considerably 

larger than white shark population 

size. (Michaud et al. in prep) 

Unknown SE Australia white 

sharks 

61 13 18 53.8 Adult abundance likely less than 

10,000 animals in Australian waters, 

adult females likely in low 1000s to 

high 100s. Unknown historical 

population size (Blower et al. 2012, 

Malcolm et al. 2001) 

Unknown SW Australia white 

sharks 

30 9 10 33.3 Adult abundance likely less than 

10,000 animals in Australian waters, 

adult females likely in low 1000s to 

high 100s.  Unknown historical 

population size (Blower et al. 2012, 

Malcolm et al. 2001) 

Unknown NEP white sharks 57 9 10.5 66.7 Unknown population size or history   

(Jorgensen et al. 2010) 

 

 

http://www.iucnredlist.org/details/2468/0
http://www.iucnredlist.org/details/2468/0
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3. DPS Determination 
 

3.1.  ESA discreteness and significance criteria 

 

Joint National Oceanic and Atmospheric Administration (NOAA)/ U.S. Fish and Wildlife 

Service (FWS) policy defines a population to be a distinct population segment (DPS) if it 

is both discrete and significant relative to the taxon to which it belongs (61 FR 4722, 

February 7, 1996). Under the policy, a population may be considered discrete if it 

satisfies one of the following conditions:  

 It is markedly separated from other populations of the same taxon as a 

consequence of physical, physiological, ecological, or behavioral factors. 

Quantitative measures of genetic or morphological discontinuity may provide 

evidence of this separation.  

 It is delimited by international governmental boundaries within which differences 

in control of exploitation, management of habitat, conservation status, or 

regulatory mechanisms exist that are significant in light of Section 4(a)(1)(D) of 

the ESA.  

 

If a population segment is considered discrete, NMFS must then consider whether the 

discrete segment is significant to the taxon to which it belongs. In carrying out this 

examination, NMFS will consider available scientific evidence for this significance. This 

consideration may include, but is not limited to, the following:  

 persistence of the discrete segment in an ecological setting unusual or unique for 

the taxon,  

 evidence that loss of the discrete segment would result in a significant gap in the 

range of the taxon,  

 evidence that the discrete segment represents the only surviving natural 

occurrence of a taxon that may be more abundant elsewhere as an introduced 

population outside its historical range, or 

 evidence that the discrete segment differs markedly from other populations of the 

species in its genetic characteristics.  

 

Because precise circumstances are likely to vary considerably from case to case, it is not 

possible to describe prospectively all the classes of information that might bear on the 

biological and ecological importance of a discrete population segment. Thus, in addition 

to the four criteria listed above, the policy also allows for consideration of other factors if 

they are appropriate to the biology or ecology of the species. Data relevant to the 

distinctiveness and the significance questions include the ecological, behavioral, and 

genetic data summarized in Sections 2.2 and 2.3 above. 

 

The BRT considered a number of factors related to NEP white shark population's 

behavior, geographic range and genetics that relate to both the discreteness and 

significance criteria. The BRT considered the best available biological and ecological 

information in addressing the discreteness criterion and did not consider whether or not 

the international boundary criterion was applicable because other information indicated 
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the population met the markedly separate condition.  If the population is determined to be 

markedly separate, it is not necessary to address the international boundary factor since 

both conditions do not need to apply. Some discreteness and significance factors as 

defined by the DPS guidance were not considered in detail as the BRT determined there 

was no evidence to suggest that those factors were applicable to NEP white sharks. In 

particular, there is no evidence to suggest that NEP white sharks are discrete from other 

white shark populations based on ecological characteristics, or marked physical or 

physiological separation. The team also dismissed the significance criterion based on the 

discrete segment representing the only surviving natural occurrence of the species within 

its historical range, as white sharks are known to occur in large areas of both the Atlantic 

and Pacific Oceans.    

 

Each remaining discreteness and significance criterion relevant to NEP white sharks was 

discussed separately and the arguments for and against each factor were examined in 

detail.  As noted in the Introduction, the BRT used the Structured Expert Decision 

Making (SEDM) method to evaluate each discreteness and significance factor potentially 

relevant to NEP white sharks, with each team member asked to allocate 100 points to the 

arguments for and against each factor.  Point allocations from all team members were 

combined to produce percentage plausibility for each argument, reflecting the BRT’s 

opinion regarding the plausibility for the arguments for or against each factor. A score 

greater than 50% indicates that the arguments in favor of that factor carry more weight 

than the arguments against, and higher values indicated greater confidence in those 

arguments than do lower values. Individual arguments for and against each factor, as well 

as all of the individual point-allocations, are listed in Appendix C. 
 

3.1.1. BRT determination of ESA discreteness 

 

The BRT expressed strong support for a finding that the white sharks in the NEP are 

discrete from other white sharks found in the Atlantic and Pacific Oceans (Table 3.1).  

The team found that NEP white sharks are markedly separated from other white sharks 

based on behavioral (spatial) factors as supported by tagging efforts, photo-ID and 

genetics data. In particular, the team felt that the site fidelity, lack of apparent movement 

outside the NEP (Domeier and Nasby-Lucas 2008, Jorgensen et al. 2010) and lack of 

shared haplotypes with other white sharks from Australia/New Zealand, South Africa and 

Japan (Jorgensen et al. 2010, Tanaka et al. 2011), supported discreteness. All tagging and 

photo-ID data from the two NEP aggregation sites show consistent patterns of pelagic 

and near shore phases with adults and subadults, both male and female, moving between 

regions within the NEP.  One individual has reportedly returned to the same site in 

central California intermittently for 22 years (Anderson et al. 2011). Tagging data for 

YOY and juveniles also show movements restricted to the coastal waters of North 

America (Weng et al. 2007b). Results from genetic studies using mtDNA reveal no 

shared haplotypes among the NEP white sharks and those studied from other regions 

(Jorgensen et al. 2010, Tanaka et al. 2011). This monophyletic pattern supports the 

inference that little movement occurs among these regions. To maintain genetic 

separation requires that less than one individual per generation moves between groups. 

Of note, however, is that the use of mtDNA only assesses female-mediated gene flow. 

While some uncertainty exists regarding sampling bias associated with the tagging and 
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genetics, the BRT concluded that the weight of the evidence did support recognition of 

NEP white sharks as behaviorally discrete from other white sharks in the taxon (93% of 

plausibility points: Table 3.1).   

 

3.1.2. BRT determination of ESA significance 

 

The BRT discussed the significance of the NEP white sharks with respect to the global 

taxon. In particular, the BRT focused on the following two factors: 

 genetic information for NEP white sharks and differences from other white sharks 

in the Pacific and Atlantic Oceans; and 

 the loss of the NEP white sharks resulting in a significant gap in their range.  

 

The BRT concluded that NEP white sharks are significant to the taxon in which they 

belong (Table 3.1), based on the following: marked genetic differences, and significant 

gap in range if lost.  

  

3.1.2.1. Genetics  

 

The BRT evaluated the genetic significance of the NEP population by examining mtDNA 

haplotype data from white sharks sampled in central California, Japan, New 

Zealand/Australia, and South Africa (Jorgensen et al. 2010, Tanaka et al. 2011). 

Comparisons across studies revealed that no NEP haplotypes are shared with any other 

regions supporting the conclusion that NEP white sharks make up a unique monophyletic 

clade. The magnitude of mtDNA differentiation suggests that migration between sites is 

less than one migrant per generation and that enough time has passed to potentially allow 

adaptation to NEP habitat.  While the mtDNA data only provide data regarding female 

gene flow, many of the central California white sharks included in the genetic study were 

adult males with photographic histories supporting fidelity to NEP aggregation sites.  All 

of these males had haplotypes indicating an NEP origin.  These observations are 

consistent with a closed population with little evidence for different patterns of male-

mediated gene flow. However, this cannot be known with certainty until multi-locus 

nuclear DNA data are evaluated (Pardini et al. 2010, Gubili et al. 2012). 

 

Potential issues with the genetic data include: 1) the small sample sizes for most studies, 

2) the large number of unique haplotypes among the NEP white sharks sampled, 

suggesting that diversity is not fully characterized, 3) the use of only maternally inherited 

markers (mtDNA), and 4) bias associated with the sample collection in time and space 

(e.g., the NEP study only included samples from central California). Despite these 

potential issues, the BRT concluded that NEP white sharks are significant to the taxon 

based on marked genetic differences from other populations of the species (81% of 

plausibility points Table 3.1).  

 

3.1.2.2.  Significant gap in the range of the taxon 

 

The BRT compared the range of NEP white sharks to the global distribution of white 

sharks to assess whether the loss of NEP white sharks would result in a significant gap in 
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the range of the taxon. The BRT felt it is highly likely that loss of the NEP white sharks 

would result in the loss of white sharks from half the North Pacific as well as along the 

west coast of North America and potentially around Hawaii. The BRT felt strongly that 

this represented a significant portion of the range of the taxon (96% of plausibility points) 

(Table 3.1).  

 

3.1.3. Conclusions for DPS determination 

 

The BRT concluded that the NEP white shark population met the DPS discreteness and 

significance criteria. Uncertainty expressed by the BRT, as measured by the minority of 

points assigned to arguments against individual discreteness and significance factors, 

primarily reflected an unknown degree of sampling bias in the available datasets, 

limitations of the genetic data and a lack of complete data for white sharks in other 

regions of the Pacific.  However, the information that is presently available and the 

application of the best-available science standard, supports the BRT’s conclusion that this 

population meets the DPS discreteness and significance criteria. 

 
Table 3.1.Summary of BRT evaluation of discreteness and significance based on point allocations to 

arguments for and against each factor considered in detail by the team (see Appendix C for a 

complete list of point allocations by team member).  One hundred points were assigned to arguments 

for and against each criterion by each team member, such that the total point allocation for each 

criterion is 800 points. The average and standard deviations are shown. 

 

Criteria Percentage (%) ‘For’ Percentage (%) “Against’ 

Discreteness  93 (3) 7 (3) 

Significance  

    Gap in range 

    Genetics 

 

96 (11) 

81 (4) 

 

4 (11) 

19 (4) 

 

 

3.2. Significant portion of species range  

 

In addition to deciding whether the NEP white shark population met the DPS criteria, the 

BRT was asked to identify whether there are any specific portions of the species' 

geographic range within the NEP that are significant in terms of the population’s overall 

viability, and which if lost would significantly increase the population’s risk of 

extinction.  This approach was taken to be consistent with the NMFS-FWS draft 

proposed policy on interpreting the phrase “significant portion of a species range” in the 

ESA definitions of threatened and endangered species (76 FR 76987; December 9, 2011).  

Under this draft proposed policy, a portion of the range of a species is “significant” if its 

contribution to the viability of the species is so important that, without that portion, the 

species would be in danger of extinction. The BRT used the SEDM method to determine 

the plausibility that there was a significant portion of its range (SPOR) within which NEP 

white sharks were at high risk.  

 

To examine the potential for a SPOR, the BRT assessed what were considered to be the 

greatest known threats to the population and whether these were localized to a significant 
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portion of the range or affecting the whole DPS.  The only threat considered by the BRT 

to be moderate in its severity (others were considered low risk) was the threat from 

fisheries bycatch (see Table 4.5). The largest known current threat is the bycatch of YOY 

and potentially juveniles in gillnets. Currently, the majority of bycatch occurs in Mexican 

waters, with the highest documented catch rates occurring between Sebastián Vizcaíno 

Bay and the U.S. - Mexico border, and some bycatch of YOY and juveniles in the 

southern California Bight. There is no evidence to suggest that the YOY and juveniles 

caught in fisheries off Mexico are distinct from animals caught in other locations (e.g., in 

U.S. waters). YOY and juvenile white sharks caught and tagged in the southern 

California Bight have been tracked to Mexican waters including Sebastián Vizcaíno Bay 

and the Gulf of California, indicating connectivity between Mexico and U.S. habitats. 

With respect to later life history stages, subadult and adult white sharks are found 

seasonally at known coastal aggregation sites (central California and Guadalupe Island, 

Mexico) but make a seasonal offshore migration. Males from both aggregation sites 

migrate to the same offshore habitat whereas females distribute more broadly when they 

leave the coastal aggregations.  Consequently, potential areas of risk were considered to 

be throughout the range of the NEP white shark population with no portion of the range 

being separable. The BRT assigned 100% of plausibility points that the entire NEP white 

shark population should be examined for extinction risk and there was no portion of the 

range that should be considered separately.   
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4. Assessment of NEP White Shark Population Extinction Risk 
 

After concluding that the NEP white shark population met the DPS criteria, the BRT 

evaluated the biological status of the population to determine whether it is at risk of 

extinction using the best available biological information. In assessing extinction risk of 

this population, the BRT evaluated both its present risk of extinction and the risk of 

extinction it may face in the foreseeable future to the extent it can be predicted. For the 

purposes of this extinction risk assessment, the BRT defined foreseeable future as the 

timeframe over which threats and other factors can be reliably predicted to impact the 

biological status of the NEP white shark population.  To assess extinction risk, the BRT 

examined threats to the population, direct and indirect information on population trends, 

abundance of the population and associated biases with current estimates, and developed 

a white shark population model to assess the impacts of fishery mortality on the 

population under a range of estimated (or assumed) abundance and mortality levels. 

Finally, the BRT considered all of the available information related to extinction risk and 

assessed the overall extinction risk facing the NEP white shark population now and in the 

foreseeable future.  
 

4.1. Potential threats to the NEP white shark population 

 

A key element to understanding current and future population status is assessing threats 

to the populations. The BRT considered a range of threats both natural and anthropogenic 

and evaluated both the historic and current/future risk associated with each threat. 

Historic risk covered a period considered to be appropriate for each risk. Consideration of 

future threats was limited to 60 years, a period that corresponds roughly to 3 generation 

times, and represents a biologically relevant time horizon for projecting conditions into 

the future.  Threats included: 1) fisheries mortality in U.S., Mexican and international 

waters 2), loss of prey due to overharvesting, 3) small population effects, 4) disease and 

predation, 5) habitat degradation linked to contaminants, and 6) global climate change. 

Based on the information provided, the team conducted SEDM to characterize the 

severity of threats and the associate certainty. The SEDM results were then used to guide 

the inclusion of threats into the subsequent risk analyses.  

 
4.1.1. Interactions with commercial and recreational fisheries  

 

4.1.1.1. High seas driftnet fishery 

 

From the 1970s to 1992 there were a number of large-scale fisheries on the high seas that 

had significant amounts of shark bycatch. Large-scale drift gillnet (DGN) fisheries in the 

Pacific included the salmon, the flying squid and the large-mesh DGN fishery for tuna 

and billfish. The salmon fishery was located west of 180o W and is not likely to have 

interacted with the NEP white shark population.  The area fished by the flying squid and 

large mesh fisheries included the waters around Hawaii, although these fisheries are 

centered in the western Pacific and both had an eastern bound of between 142o and 145o 

W (Bonfil 1994). The easternmost  areas of these fisheries overlapped with the western 
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portion of pelagic habitat used by subadult and adult white sharks around Hawaii, but 

they were west of the core region of the offshore focal area, which is between 

approximately 140o and 134o W (Domeier and Nasby-Lucas 2012).  

 

Catch of white sharks was reported in both the flying squid and large mesh DGN 

fisheries, although data are scarce. Using data collected from observer programs in 1990, 

Bonfil (1994) reported 7 white sharks observed captured in the flying squid fishery and 

35 in the large mesh DGN fishery. Where these sharks were caught was not reported. 

Accounting for the percentage of the fishery that was observed, he used these numbers to 

estimate total white shark catch of 156 and 564 individuals, respectively, for the two 

fleets in 1990. There is no way of determining how many of these sharks may have been 

from the NEP white shark population as opposed to from a western Pacific population. 

However, based on the information available to the author, his conclusion was that very 

few large (mature or subadult) white sharks associated with the NEP DPS were likely to 

have been caught in the high-seas fisheries (Bonfil, Instituto Nacional de la Pesca 

Progreso, pers. comm.) given the smaller size of animals typically caught and the 

geographic distribution of effort.  According to Bonfil (pers. comm.), the size data 

reported for these catches in Bonfil (1994) (suggesting captured white sharks averaged 

about 50 kg in weight per individual) are now considered unreliable and associated 

instead with mako sharks. 

 

Due to concerns about bycatch of many taxa in these fisheries, the high seas drift net 

fisheries were phased out in 1992 following a United Nations resolution banning their 

use. A survey of NOAA personnel involved in international affairs and Illegal, 

Unreported and Unregulated (IUU) fishing yielded no information to indicate that these 

fisheries are still operating in waters east of Hawaii. However, by their nature these 

fisheries are difficult to document and uncertainty exists in assessing the presence of IUU 

fishing. 

  

4.1.1.2.  Hawaii longline fisheries:  

 

Longline fisheries based out of Hawaii for swordfish and bigeye tuna operate in waters 

that can overlap with NEP white shark habitat. Observer data for the shallow set 

swordfish fishery records from 1997 – 2008 show 7 records of white shark catches. These 

records were not verifiable and were considered suspect by NOAA personnel familiar 

with the database (Bill Walsh, NMFS, pers. comm.). Only one record had written notes 

and the description provided was consistent with a salmon shark (Lamna ditropis). The 

condition of four sharks was reported with three returned to the water alive and one dead.  

 

4.1.1.3. U. S. west coast fisheries 

 

Juvenile white sharks have historically been taken in the near-shore net fisheries 

operating off the coast of California, Oregon and Washington. These fisheries include the 

coastal set-net fishery for halibut, other shark species and white seabass, the large-mesh 

drift gillnet fishery for sharks and swordfish, and the small-mesh drift net fishery for 

seabass and yellowtail.  Klimley (1985) summarized the catch data for 109 white sharks 
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caught in a range of gear types from 1935-1984.  Lowe et al. (2012) characterized 369 

catch records from 1936 to 2009, and examined trends over time in relation to fisheries 

effort.  These studies indicated that most white sharks were caught off the California 

coast in bottom set nets both north and south of Point Conception. The majority of the 

catch consisted of juvenile and YOY white sharks; however, catch of subadults and 

adults was also recorded in these fisheries. Catches were sporadic throughout the 1970s, 

followed by an increase in the 1980s as the small and large mesh net fisheries expanded. 

Catches then decreased, reaching a low in 1994 when California adopted protections for 

white sharks and the Marine Resources Protection Act of 1990 phased out gill and 

trammel nets within three miles of the mainland and one mile of the offshore islands 

(Lowe et al. 2012). 

 

 

 

 
 
Figure 4.1 White shark reported catch data and total number of gillnet sets from the different 

fisheries operating off the West Coast from 1981-2011.  Catch data are from logbooks, the MBA 

sampling program the NMFS observer program and PacFIN.  

 

In addition to these published summaries, the BRT compiled U.S. fisheries effort and 

catch data (Figure 4.1) from PacFIN (Pacific Fisheries Information Network, 

http://pacfin.psmfc.org/), logbooks, fisheries observer programs, and the Monterey Bay 

Aquarium (MBA) scientific white shark collection program, which since 2002 has 

financially incentivized fishermen to report their white shark catches (Appendix D). In 

the last 10 years the majority of catch data for U.S. fisheries has come through the MBA 

program.  
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Prior to the mid-1990s, most reported catches occurred in the coastal set net and large-

mesh drift net fishery.  Reported catch numbers peaked during the mid-1980s and 

declined steadily thereafter as a result of decreasing fishing effort and increasingly 

restrictive fishing regulations.  The most important regulatory change was likely the near 

shore net ban mentioned above. Because these fisheries operated primarily over the 

continental shelf, the 1994 ban dramatically reduced the areas in which they could 

operate to a few regions including the Ventura Flats, Channel Islands, Huntington Flats, 

and Oceanside where the continental shelf extends beyond the 3 nmi near-shore closure. 

Other relevant regulatory changes to the large-mesh DGN fleet include the delay in the 

fishing season start date from spring to mid-August and the increase in the dropper length 

on the nets to 12 m to move them out of the surface waters benefitting small white sharks 

which spend the majority of their time in the top 10m of the water column (Weng et al. 

2007b).  In addition, in 2001 a time-area closure essentially eliminated the large-mesh 

DGN fleet from near-shore waters north of Morro Bay. Since 1999 only one white shark 

has been reportedly caught in the large-mesh DGN fishery.  Most current catch occurs in 

the set net fishery operating in the southern California Bight. The management regimen 

for fisheries interacting with white sharks has been similar since the 1994 closure of state 

waters. Reported catches in this area, primarily of YOY white sharks, has been increasing 

through the 2000s. The difference in catch distribution across size classes associated with 

the major regulatory change in 1994 is shown in Figure 4.2. 

 

 
Figure 4.2 The distribution and amount of gillnet catch along the California Coast in relation to 

CDFW fishing blocks showing the periods from 1981-1993 and 1994 - 2011.  
 

The BRT used the fisheries catch and effort data to examine both historic and current 

levels of catch. By comparing the calculated catch per unit effort (CPUE calculated as the 
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number of sharks caught per fishing set) from logbook data to CPUE calculated from 

fisheries observer programs and the MBA program, it is possible to estimate the level of 

under-reporting by logbook information and thus calculate an approximate corrected time 

series of white shark catch.  Most catch data recorded as part of observer or MBA 

programs are from the set net fishery. The number of catches recorded for the large-mesh 

or small-mesh drift net fisheries are too few to reliably estimate under-reporting rates for 

these fisheries independently.  Therefore it was assumed that under-reporting rates would 

be similar across all net fisheries, and a single correction factor was estimated based on 

information combined across fisheries.  Table 4.1 summarizes effort and catch data for 

each fishery, for years when observer programs or the MBA program were active.   

Across all these years, total CPUE based on data from these programs was 0.00339 

sharks per set, whereas CPUE based on logbook data for these years was 0.00062.  The 

logbook CPUE is 18.3% of the CPUE calculated from the scientific data, yielding a 

correction factor of 1/0.183 = 5.6.  The correction can be alternatively calculated by 

noting that out of 12 catches recorded by NMFS observer programs between 1990 and 

2011, 3 (25%) of these were also recorded in logbooks (Table 4.2), yielding a correction 

factor of 1/0.25 = 4.  For purposes of the analysis, a correction factor of 5 was used as an 

approximation.  The logbook-reported catches were multiplied by this correction factor to 

estimate total catches in each fishery per year from 1981 to 2011 (Table 4.3).   

 
Table 4.1 Comparison of effort (sets) and catch data summaries for U.S. west coast net fisheries, for 

years when scientific observer programs were active.  Data from the Monterey Bay Aquarium 

scientific collection program are also included for the set net fishery. (lgDGN and smDGN = large- 

and small-mesh drift gill net; CPUE = catches per set).  

  Logbook data Scientific data CPUE 

Fishery Years Sets Catch Obs. sets Obs. catch Logbook Obs. 

set net 1990 – 1994 45857 8 8614 9 0.00017 0.001 

set net 2002 – 2011* 25909 52 8456 74 0.0020 0.0088 

lgDGN 1990 – 2011 47099 14 8225 3 0.00030 0.00037 

smDGN 
2002 – 2004, 

2010 – 2011 
1233 1 81 0 0.00081 0 

TOTAL  120098 75 25376 86 0.00062 0.00339 

*MBA program 

 
Table 4.2 White shark catches recorded as part of the scientific observer program for U.S. west coast 

net fisheries, or from the MBA scientific collection program, and the number of those that were also 

recorded in fishermen’s’ logbooks. Note that these are only the sharks that are recorded in both 

datasets. (lgDGN and smDGN = large- and small-mesh drift gill net). 

Fishery years  catch # also reported 

in logbooks 

Data program 

Set net 1990 – 1994 9 2 NMFS observer program 

Set net 2002 – 2011 74 40 MBA program 

lgDGN 1990 – 2011 3 1 NMFS observer program 

smDGN 2006 – 2011 11 2 MBA program 

     

TOTALS  97 45  

Totals, NMFS 

data only 

 12 3  
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There is some belief that logbook reporting rates throughout the set net fishery may have 

increased with initiation of the MBA program (and compare proportion of MBA vs. 

observer-documented catches that were reported in logbooks, Table 4.2).  If so, then 

increased reports (and calculated catches and CPUE) of white sharks during the 2000s 

could simply reflect increased reporting (not increasing CPUE), and using the same 

correction factor for under-reporting across all years (as in Table 4.3) might over-

estimate catch and CPUE in the 2000s.  Potential changes in reporting rate can be 

evaluated for the set net fishery.  For 1990-1994, the ratio of the CPUE based on observer 

data to the CPUE based on logbook data was 5.9, whereas for 2002 – 2011, the ratio of 

the CPUE based on MBA data to the CPUE based on logbook data was 4.4. This 

corresponds to a 34% increase in mean logbook reporting rate since 2002, assuming that 

all catches from vessels participating in the MBA program are reported to the MBA.  

However, given limited sample sizes from these programs, it is difficult to know how 

much reporting has truly changed (vs. these differences being an artifact of sampling 

error).  Moreover, it is not known if 100% of the white sharks captured during the 2000s 

were reported to the MBA. A reporting rate of less than 100% would bias downward the 

correction factor for 2002-2011.  In short, it appears that logbook reporting rates for the 

set net fishery could have increased during the 2000s, but the apparent increase seems 

relatively modest and uncertain and would not fully explain the increased number of 

catches in the logbook data through this time period. The logbook-based CPUE was 7 

times higher in the period from 2002-2011 than from 1990-2001 (based on the data in 

Table 4.3). These results are consistent with a true increase in the white shark CPUE in 

the set net fishery during the 2000s, as suggested by Lowe et al. (2012). This is further 

explored in Section 4.3.  
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Table 4.3 White shark catches recorded in logbooks from 1981 – 2011 for three U.S. west coast net 

fisheries, and approximate corrected estimates of total catch (lgDGN and smDGN = large- and small-

mesh drift gill net).  

Year Effort (sets) Logbook reported catches Estimated catches (logbook x 5) 

 lgDGN smDGN set net lgDGN smDGN set 

net 

lgDGN smDGN set 

net 

TOTAL 

1981 5594 477 8982 8 0 6 40 0 30 70 

1982 10292 308 15053 6 0 4 30 0 20 50 

1983 9883 187 14525 7 0 19 35 0 95 130 

1984 9800 155 20093 4 0 24 20 0 120 140 

1985 9618 321 22799 27 0 9 135 0 45 180 

1986 10392 623 20577 7 0 12 35 0 60 95 

1987 8280 461 17876 5 0 7 25 0 35 60 

1988 5760 496 14697 3 0 5 15 0 25 40 

1989 5620 361 11601 0 0 6 0 0 30 30 

1990 4163 372 11593 2 0 3 10 0 15 25 

1991 4232 512 10975 1 0 2 5 0 10 15 

1992 3736 357 9367 2 1 0 10 5 0 15 

1993 5040 504 9586 1 0 1 5 0 5 10 

1994 4076 614 4336 1 0 2 5 0 10 15 

1995 3373 478 3667 3 0 0 15 0 0 15 

1996 3143 500 3571 0 0 1 0 0 5 5 

1997 2678 376 4627 1 0 2 5 0 10 15 

1998 2652 205 3883 1 0 2 5 0 10 15 

1999 2389 260 4495 1 0 1 5 0 5 10 

2000 1193 251 4577 0 0 4 0 0 20 20 

2001 1410 217 3651 0 0 3 0 0 15 15 

2002 1410 252 3861 0 0 2 0 0 10 10 

2003 1171 255 3522 0 0 4 0 0 20 20 

2004 932 186 3620 0 0 4 0 0 20 20 

2005 817 255 2508 1 0 3 5 0 15 20 

2006 1409 291 2167 0 1 8 0 5 40 45 

2007 1172 276 2318 0 0 3 0 0 15 15 

2008 963 311 2174 0 1 8 0 5 40 45 

2009 606 232 1756 0 0 8 0 0 40 40 

2010 377 285 1998 0 1 11 0 5 55 60 

2011 157 255 1985 0 0 1 0 0 5 5 

 

Size and sex information for white sharks caught in the fisheries were obtained from the 

scientific observer records and the MBA programs. Based on 97 records between 1991 

and 2012, an estimated 82% of white sharks caught were < 175 cm TL and considered to 

be YOYs, and the sex ratio of YOY catches was close to parity (49 females: 48 males) 

(Figure 4.3). Larger sharks were taken primarily in the 1980s before implementation of 

the observer program and thus are only reported in the logbook data.  
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Figure 4.3 Sex and size composition of white shark catch from the observer and MBA programs 

covering the period from 1991-2012 (n=97). 

 

The expected mortality of white sharks captured in the set net fishery can be estimated 

from the number of live and dead sharks reported in the MBA program. Overall, 49% of 

white sharks sampled by the MBA program were brought in dead.  For the sharks brought 

in alive that were subsequently tagged with satellite tags, survival was 98% when soak 

times (the amount of time the set net was left in the water to fish)  were 24 hours or less  

(C. Lowe, California State University Long Beach (CSULB), pers. comm.).  

 

4.1.1.4. Mexican fisheries 

 

Because the NEP white shark population occupies Mexican waters, it is important to 

examine potential fisheries interactions in Mexico as well. A number of researchers have 

examined white shark catch rates both along the Pacific side of the Baja Peninsula and in 

the Gulf of California. A range of approaches have been used to document catch 

including surveys of artisanal fishing camps, surveys of carcass discard sites, 

examination of the logbook data from one commercial drift gillnet vessel and the 

associated observer data, and examination of purchase records of trunks (after removal of 

head and innards) by local buyers. 

 

Pacific coast of Baja peninsula, Mexico:  

Catch along the Pacific coast of the Baja Peninsula, Mexico is documented primarily by 

researchers working out of Centro de Investigación Científica y de Educación Superior de 

Ensenada (CICESE) in Ensenada, Mexico. Santana-Morales et al. (2012) summarized the 

results from 111 catch records of white sharks between 1999 and 2010. The size of the 

sharks was estimated to range between 123 to 274 cm TL with 80% of the catch being 

YOY (<175cm). Most white sharks were caught in the summer months (60%), and most 

YOY were caught inside Sebastián Vizcaíno Bay.  

 

More recent efforts to quantify catch of white sharks have been conducted by CICESE 

and involve working with the local distributors in Sebastián Vizcaíno Bay that purchase 

fish from the camps in the area where the majority of white shark bycatch occurs (O. 
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Sosa-Nishizaki, CICESE, pers. comm.). The advantage of this approach is that it targets 

the point of contact for all fishermen. The disadvantage is that only trunks are brought to 

the local distributors, which raises concerns about the accuracy of reported species 

identifications and yields no information on size or sex.  According to the local 

distributors, white sharks have a lower monetary value because of their (visibly) lower 

meat quality.  Because the color pattern of a white shark's body trunk differs from that of 

other species (e.g., more strongly bicolored in salmon than white shark), white sharks 

trunks are considered to be distinguished easily from other similar shark species like 

mako sharks (Isurus oxyrinchus) and salmon sharks. Also, mako and salmon sharks tend 

to be caught in pelagic longline fisheries whereas as white sharks are primarily caught in 

near shore bottom set nets for halibut (O. Santana, CICESE. pers. comm.). The accuracy 

of the species identification, however, has not yet been independently validated.  

 

In 2011, ~ 186 white sharks were caught in Baja California Norte (located between the 

U.S.-Mexican border and in Sebastián Vizcaíno Bay) (O. Sosa-Nishizaki, CICESE, pers. 

comm.). The vast majority of sharks were caught in Sebastián Vizcaíno Bay and 

documented through the distributor (~170). In 2012, Mexico adopted new regulations 

prohibiting all targeted shark fishing along the Pacific coast of Mexico from June 1 – July 

31. As a consequence, there was no reporting of white sharks being caught during those 

two months and the total number of white sharks reported caught for the year dropped to 

85. It is possible that white sharks were still caught and landed during the closed period; 

however, it is impossible to know how many given the current lack of reporting. 

Beginning in 2013, the shark fishing closure will include the month of May as well. It is 

uncertain how effectively these regulations will be enforced, but some level of 

enforcement was in place during 2012. If the regulations are fully enforced, we would 

expect a 60% reduction in white shark catches given the closure of fishing in May, June 

and July. The projected annual catch would be approximately 68 white sharks. If there is 

no or limited enforcement during this period or no reduction in catch, overall catch levels 

for juvenile and YOY white sharks on the Pacific coast of Baja California Norte may still 

be around 186 per year. One caveat is that it is impossible to predict how fishing effort 

might shift in response to the new regulations and how this will impact on white shark 

bycatch.  

 

White sharks are also caught along the Pacific coast of the southern portion of the Baja 

California peninsula (Baja California Sur) but have not been quantified, except for the 

reporting that 6 juvenile white sharks were caught by 3 boats fishing out of Isla 

Magdalena (near Magdalena Bay), documented by IEMANYA (Investigacion, 

Educacion, Manejo y Asesoria) (H. Peckham, Grupo Tortuguero, pers. comm.). 

 

Gulf of California: 

Although white sharks are known to be caught in fishing gear in the Gulf of California, 

Mexico, incidental catch is not well quantified. Galván-Magaña et al. (2010) reported 30 

records of white shark catch between 1964 and 2010. These included a mixture of adult, 

subadult and juvenile sharks, but no YOY. To date there is only one record of a YOY 

white shark captured in the Gulf of California, in the northern region (O. Sosa-Nishizaki, 

CICESE, pers. comm.), although large females are documented to come into this area, 
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presumably to have pups (Domeier and Nasby-Lucas 2013). A second study conducted in 

1998 and 1999 documented elasmobranch catch from 83 artisanal camps along the 

eastern and western coasts of the Gulf of California with most effort focused from 

March-November (Bizzarro et al. 2009). This is the most comprehensive survey 

conducted to date of artisanal fisheries in the Gulf of California.  These researchers did 

not see any white sharks over the course of their survey. Records of two additional 

individual catches of adult female white sharks in the Gulf of California are reported for 

2004 (Castro 2012) and 2012 (M. Domeier, MCSI, pers. comm.). 

 

4.1.1.5. Recreational fisheries  

 

White shark interactions with recreational fisheries are relatively rare off California. 

Marine recreational fishery survey data collected in California [including Marine 

Recreational Fisheries Statistics Survey (MRFSS) and the California Recreational 

Fisheries Survey (CRFS)] from 1980 through the present contain only one record. 

Logbook records for Commercial Passenger Fishing Vessels (CPFV) operating out of 

California ports indicate that from 1980 through 2011, seven white sharks were caught. 

They are also occasionally caught off fishing piers. In 2012, two fishing citations were 

given for the illegal take of juvenile white sharks.  

 

4.1.1.6. Summary of YOY and juvenile bycatch estimates 

 

Current bycatch of YOY and juvenile white sharks is the sum of bycatch in both U.S. 

and Mexican fisheries.  In the U.S., the average annual bycatch from 2001 – 2011 was 

approximately 28 (Table 4.3).  Given an estimated mortality rate of 0.49, the estimated 

number of individuals killed per year was 16.  Of these, 82% are estimated to be YOYs 

and the other 18% are estimated to be juveniles at least one year in age.  In Mexican 

fisheries, 100% of the YOY and juveniles captured white sharks are assumed to be killed 

(i.e., retained and sold) given their market value.  The estimated mortality in 2011, 

therefore, was 186 white sharks in Baja California Norte and an additional 6 white sharks 

in Baja California Sur.  Of these, 77% are considered to be YOYs (O. Sosa-Nishizaki, 

CICESE, pers. comm.), similar to the estimate of 80% by Santa-Morales et al. (2012).  

The remaining 23% are juveniles at least 1 year in age.  The total estimated catch 

mortality for U.S. and Mexico is therefore 192 + 16 = 208 white sharks per year, with 

approximately 77% being YOYs and 23% being juveniles greater than one year in age.  

There is some level of uncertainty in these estimates since bycatch estimates are not 

available for all fisheries in Mexico and the bycatch estimates from Baja California Norte 

have not been scientifically verified. 

 

Bycatch for subadult or adult white sharks has not been quantified.  Based on the best 

available information, the BRT developed plausible bycatch estimates for subadult/adult 

white sharks in the U.S. and Mexico (see Section 4.4.4). 
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4.1.2. Prey availability 

 

Another proposed threat to white shark populations is the over utilization of their prey by 

humans which could have impacted the carrying capacity for white sharks in the NEP.  

Declines in the major prey species across life history stages have been documented over 

different time periods.  

 

4.1.2.1. Subadult and adult white sharks  

 

Adult white sharks are documented to forage on pinnipeds. Populations of pinnipeds in 

the NEP were dramatically reduced in the 1800s due to hunting. Northern elephant seals 

and Guadalupe fur seals (Arctocephalus townsendi) were thought to have been driven to 

extinction, and census numbers in the early 1900s were close to zero (Townsend 1924, 

Huey 1930, Hubbs 1956). Similar declines were documented for harbor seals (Phoca 

vitulina richardsi) and California sea lions (Bonnot 1928). Population levels for these 

four main species started increasing in the 1950s and 1960s and have rebounded 

dramatically (Gallo-Reynoso et al. 2005, Carretta et al. 2011) (Figure 4.4).  The BRT 

considered the period of historic risk to white sharks due to over utilization of pinniped 

prey to be from the 1800s through 1980, when significant recoveries were noted in all of 

the pinniped species listed above, although the number of California sea lions at 

Guadalupe Island remains low but stable (estimated at less than 1200 animals) (Gallo-

Reynoso et al. 2005).  

 

 
Figure 4.4 Estimated population abundance counts (y-axis) for northern elephant seals, Guadalupe 

fur seals, California sea lion and harbor seals from 1880 to 2010 for Guadalupe Island and 

California. Note that the numbers for northern elephant seals in California indicate the estimated 

number of elephant seal births for that year. (Gallo-Reynoso et al. 2005; Carretta et al. 2011; M. 

Lowry, NMFS, pers. comm.). Note that for California sea lions in California, the number indicates 

pups rather than adults which are currently at an abundance of ~150,000. 

 

In addition to pinnipeds, subadult and adult white sharks have been observed feeding on 

carcasses of cetaceans (Dudley et al. 2000, Skomal et al. 2012, Fallows et al. 2013). Like 

pinnipeds, large whales also suffered severe population declines due to overharvesting up 
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through the mid-1980s. While whale recoveries have not been as dramatic or as 

consistent across species as for many pinnipeds, many of the larger baleen whales such as 

fin (Balaenoptera physalus), humpback and gray whales (Eschrichtius robustus) have 

greatly increased (Carretta et al. 2011, Moore and Barlow 2011). The recovery of large 

whales and pinnipeds was aided by the closure of commercial whaling in the late 1980s 

and passage of the 1972 Marine Mammal Protection Act.  

  

4.1.2.2. YOY and juvenile white sharks  

 

Juvenile and YOY white sharks forage on a range of demersal and epipelagic fish, squid 

and crustaceans over the continental shelf in near shore waters. In the 1970s, fisheries 

targeting a range of fish and sharks expanded in the shelf waters along the U.S. West 

Coast. These fisheries targeted primarily white seabass, Pacific angel shark (Squatina 

californica) and California halibut (Paralichthys californicus), but caught a range of 

other species including fish, sharks, birds and marine mammals. Due to concerns in the 

1980s and 1990s about unsustainable levels of bycatch of already depleted or protected 

species (including marine turtles, marine mammals, birds and some fish), the set gillnet 

fisheries were prohibited inside California state waters (within 3 nmi of shore) in 1994 in 

accordance with the provisions of the California Marine Resource Protection Act of 

1990.  White seabass, for example, had declined to 10% of historic levels by 1981 

(Pondella and Allen 2008). Following the near shore gillnet ban in 1994, there has been 

an increase in the abundance of many species including white seabass, and leopard 

(Triakis semifasciata) and soupfin sharks. The BRT considered the period of historic risk 

associated with over exploitation of the YOY and juvenile white shark prey base to 

extend from the 1970s until 2000, providing some time for prey populations to recover 

after the gillnet closure in 1994.  

 

To evaluate possible threats to juvenile and YOY white sharks as a result of reduced prey 

resources off California, the BRT examined the status of 23 fish and invertebrate species 

(
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Table 4.4) that have either been documented in the stomach contents of juvenile white 

sharks or are potential prey because they fit in the category of standard prey types (i.e. 

demersal fish) and are found in the same habitat as white sharks and their prey. Official 

stock assessments were not available for most species. Consequently, we interpreted the 

language in the CDFW semiannual status reports and the Pacific Fishery Management 

Council’s Stock Assessment and Fishery Evaluation (SAFE) reports as well as the results 

in Pondella and Allen (2008) to determine whether there is currently concern about the 

populations. Of the 23 species examined, a broad range including crustaceans, squid, and 

demersal and epipelagic fish are considered to be healthy, with many having recovered 

from earlier overfishing. White seabass populations, for example, began to rebound in 

1997 and are now considered healthy. Similar patterns were seen in both soupfin and 

leopard shark (Pondella and Allen 2008). For some prey items, such as bat rays, there is 

no available information on stock status. Concerns remain regarding some species, 

including six species and some runs of Chinook salmon (Oncorhynchus tshawytscha) 

populations that are considered depleted. However, white sharks are generalist feeders, 

and generalists are considered more resilient to the loss of some prey items than a dietary 

specialist. The fact that there is currently sufficient prey in the California Current System 

is supported by the increase in other species that have overlapping diets including 

pinnipeds, leopard and soupfin sharks, and giant seabass (Stereolepis gigas). 
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Table 4.4 List of likely and possible prey items for white shark including whether there is concern 

about the population status due to fishing and associated comments.  

Prey Current Concern? Comments 

Chinook salmon1  YES/NO some runs healthy, others not 

Lingcod2 YES southern stock at 24% of unfished levels in 2005 

Cabezon3 YES 28% of unfished level in 2004 

Green sturgeon4  YES listed as species of concern 

CA Halibut5 YES specifically south of Point Conception 

Petrale Sole5 

(Eopsetta jordani) 

YES recent assessment puts at 18% of unfished biomass 

White Croaker5 

(Genyonemus lineatus) 

YES catch declines evident, may be linked to warming water temperatures 

Market squid6 

(Loligo opalescens) 

NO  highly productive and variable population levels, with relatively high 

catch levels 

White Seabass7 NO  Stock assessment likely to be conducted in 2013 

Black rockfish2  NO   

Pacific Mackerel8 NO relatively low population levels and very low catch 

Sardine5 NO 

although current populations levels may be low due to natural 

population variability 

Long Nosed Skate5 

(Dipturus oxyrinchus) 

NO although some model uncertainty 

Jack mackerel9 

(Trachurus symmetricus) 

NO relatively low population levels and very low catch 

CA spiny Lobster5 

(Panulirus interruptus) 

NO   

Dungeness Crab5 

(Metacarcinus magister) 

NO  

California Corbina5  

(Menticirrhus undulates) 

NO Sustainable under current recreational harvest levels 

Spotfin Croaker5 

(Roncador stearnsii) 

NO   

Yellowfin Croaker5 

(Umbrina roncador) 

NO  

Soupfin shark7 NO population increasing 

Leopard shark7 NO population increasing 

Spiny dogfish10  

LIKELY 

FINE 

very effective competitor in an ecosystem, stock assessment not 

available but no fishery since the 1930s 

Northern anchovy9 

(Engraulis mordax) 
NO relatively low population levels and very low catch 

1Myers et al. (1998), 2Larinto (2010), 3Cope et al. (2004), 4Adams et al. (2007), 5Larinto (2013), 6Rogers-

Bennett (2001), 7Pondella and Allen (2008), 8Crone et al. (2011), 9Crone, SWFSC, pers. comm., 10Gertseva 

and Taylor (2012). 
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4.1.3. Small population effects  

 

Recent studies estimate that the abundance of NEP white shark adults and subadults is in 

the low hundreds (Chapple et al. 2011, Sosa-Nishizaki et al. 2012). While the BRT felt 

that the numbers were biased and an underestimate, we addressed the potential threats 

associated with a small population size because they are cited in the listing petitions.  

 

If a population is very small there are a number of inherent risks that may increase the 

potential for the population to decline further and be at an increased risk of extinction. 

These risks typically include Allee or other depensation effects which are tied to survival 

and reproduction via three mechanisms: ecological (mate limitation, cooperative defense, 

cooperative feeding, and environmental conditioning), genetic (inbreeding and genetic 

drift), and demographic stochasticity (i.e. individual variability in survival and 

recruitment) (Berec et al. 2007). The actual number at which populations would be 

considered critically low and at risk due to low population levels varies depending on the 

species and the risk being considered. Below we address the potential for such risks to 

impact the NEP white shark population.  

  

4.1.3.1. Reproduction  

 

If a population is critically small in size, individuals may have difficulty finding a mate. 

However, the probability of finding a mate depends largely on density rather than 

absolute abundance. Individual white sharks in the NEP are not randomly distributed 

throughout their range, but instead exhibit regular seasonal migration patterns which 

include aggregating at certain near shore sites and offshore areas (Weng et al. 2007a, 

Domeier and Nasby-Lucas 2008). This aggregation behavior is thought to be associated 

with mating (Domeier 2012, Jorgensen et al. 2012a) and serves to increase their local 

density and increase the probability of individuals finding each other for mating. This 

mating strategy will reduce the effects of small population size on finding mates over 

other strategies that do not concentrate the remaining individuals. 

 

4.1.3.2. Demographic stochasticity   

 

If a population is critically small in size chance variations in the annual number of births 

and deaths can put the population at added risk of extinction. Demographic stochasticity 

refers to the variability of annual population change arising from random birth and death 

events at the individual level. When populations are very small (e.g., < 100 individuals), 

chance demographic events can have a large impact on the population.  Species with low 

mean annual survival rates are generally at greater population risk from demographic 

stochasticity than those that are long lived and have high mean annual survival rates.  Or 

in other words, species that are long lived and have high annual survival rates have lower 

“safe” abundance thresholds, above which the risk of extinction due to chance 

demographic processes becomes negligible. The bias in abundance estimates, haplotypic 

diversity and inferences about abundance from YOY and juvenile catch and mortality 

rates (see section 4.5) are all consistent with a number of adult females in the hundreds 

(see Sections 2.3, 4.1.4 and Appendix B), with a total population abundance across sexes 
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and age classes being much greater.  Consequently they should be at low risk from 

demographic stochasticity. 

 

4.1.3.3. Genetics  

 

If a population is critically small in size, Allee effects can act upon genetic diversity to 

reduce the prevalence of beneficial alleles through genetic drift. This may lower the 

population’s fitness by reducing adaptive potential and increasing the accumulation of 

deleterious alleles due to increased levels of inbreeding. Population genetic theory 

typically sets a threshold of 50 individuals (i.e. 25 males, 25 females) below which 

irreversible loss of genetic diversity is likely to occur in the near future.  This value, 

however, is not necessarily based upon the number of individuals present in the 

population (NC) but rather on the effective population size (NE), which is typically less 

than NC.  In extreme cases NE may be much (e.g. 10 – 10,000 times) smaller, typically for 

species that experience high variance in reproductive success (e.g., sweepstakes 

recruitment events).  NE may also be reduced in populations that deviate from a 1:1 sex 

ratio.   

 

With respect to considerations of NE in white shark populations, the following points are 

relevant.  Mature white sharks in the NEP are known to seasonally aggregate, suggesting 

increased mating opportunities even at low population size.  As live-bearers with large 

precocious young, there is the expectation for consistently high survival of offspring 

across females and broods (i.e., no sweepstake recruitment events).  As multiple paternity 

has been found in white shark broods (Gubili et al. 2012), this polyandrous mating 

system is likely to increase NE.  Multiple paternity also has the potential to increase the 

number of viable offspring in a single brood (Newcomer et al. 1999) and increase 

individual fitness (Neff and Pitcher 2005). Together these aspects of white shark life 

history suggest that NE is likely to be close to the number of mature individuals in the 

population, which is greater than the threshold of 50 mature animals that is typically 

thought to be sufficient to avoid deleterious loss of genetic diversity in the short term 

(IUCN 2001). In addition, although there are no available data for nuclear DNA diversity 

in NEP white sharks, the relatively high number of unique mitochondrial DNA 

haplotypes (Jorgensen et al. 2010) can be used as a proxy for evidence of high levels of 

overall genetic diversity currently within the population (Section 2.3, 4.1.4 and Appendix 

B). 

 

4.1.3.4. K selected life history parameters  

 

K selected species (i.e. those with slower population growth rates) generally tolerate a 

lower level of additive mortality than r selected species. In general, sharks are k-selected 

due to their life history characteristics, and therefore their potential for growth and 

recovery falls between those of marine mammals and teleosts (Hutchings et al. 2012). 

White sharks in particular reach maturity at a relatively older age, have smaller litter size 

than most sharks, and exhibit a semiannual reproductive cycle (Table 2.1). Comparing 

across lamnid sharks, Hutchings et al. (2012) estimated a higher rate of population 

growth potential for white sharks than for mako sharks or salmon sharks. The fact that a 
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species has a k-selected life history is not in itself a risk factor, but it does affect the level 

of removal that a population can sustain and the rate at which it can recover. Examples of 

recovery trends for long-lived sharks are white sharks in the Atlantic Ocean (Tobey 

Curtis, NERO (Northeast Regional Office, pers comm) and common thresher sharks in 

the NEP (PFMC June 2010, http://www.pcouncil.org/wp-

content/uploads/E2b_SUP_HMSMT_JUNE2010BB.pdf).  

 

4.1.3.5. Stochastic and catastrophic events  

 

Animals that are highly mobile with a large range are less susceptible to stochastic and 

catastrophic events (such as oil spills) than those that occur in concentrated areas across 

life history stages. White sharks in the NEP are likely to be resilient to catastrophic and 

stochastic events for the following reasons: 1) they are highly migratory, 2) there is a 

large degree of spatial separation between life history stages, 3) while they are found in 

near-shore aggregation sites, adult white sharks are dispersed over a very large area 

extending from the Gulf of California in the south, the Hawaiian Islands to the west, and 

Alaska to the north, 4) adult males and females exhibit a large degree of sexual 

segregation, particularly during the estimated 18 month gestation period for females, and 

5) although male white sharks utilize a common offshore focal area, this area is large, 

with the 50% density contour covering ~ 200,000 km2 (Domeier and Nasby-Lucas 2012).  

 

4.1.4. Depletion from loss of prey or direct mortality  

 

There are at least two historic risks that could have reduced the NEP white shark 

population either through direct mortality or through a reduction in the carrying capacity.  

The first of these is the major reduction in marine mammal population numbers that 

began in the 1800s and continued through 1970.  The second is white shark catch and 

mortality in regional and high seas fisheries from the 1970s through the early 1990s (see 

Section 4.1.1 of this report). However, the virtual lack of pinniped prey for nearly 100 

years also suggests that white sharks were capable of switching to other prey resources.  

It is unknown, for example, what white sharks feed upon during the majority of the year 

when they are in offshore waters, but it is unlikely to be marine mammals. Flexibility in 

diet argues against strong depletion based on prey alone. A review of the impact of 

fisheries mortality on the NEP white shark population starting in the 1970s does not 

suggest that white sharks have been severely depleted (defined by the BRT as a 90% 

reduction in the population) over the last 2 generations. Furthermore, the level of genetic 

diversity found in the NEP white shark population is consistent with a population of adult 

females ranging from a few hundred to  low thousands  (Section 2.3 and Appendix B).  

 

The petitions suggest that white sharks in the NEP are severely depleted. They cite 

heavily depleted populations in other ocean basins as support for this determination. 

Reports of white shark population declines are common for all oceans and have resulted 

in the listing of the global population under CITES (the Convention on International 

Trade in Endangered Species of Wild Fauna and Flora) Appendix II and by the IUCN as 

vulnerable (Hilton-Taylor 2000).  Initial reports of white shark population declines are as 

high as 80% (Baum et al. 2003). More recent analyses of some of these datasets (FAO 

http://www.pcouncil.org/wp-content/uploads/E2b_SUP_HMSMT_JUNE2010BB.pdf
http://www.pcouncil.org/wp-content/uploads/E2b_SUP_HMSMT_JUNE2010BB.pdf
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2004) however, indicate that while population declines are evident in some areas, 

declines are exaggerated or unsubstantiated in others.  For example, Baum et al. (2003) 

used logbook data to examine trends in the Northwest Atlantic and reported an 80% 

decline in white shark populations there. A reexamination of the logbook data however, 

revealed that catch patterns were linked to a change in reporting requirements where 

fishers targeting sharks were no longer required to report their catch in pelagic longline 

logbooks (FAO 2004, Burgess et al. 2005). One of the challenges in most of the studies is 

the lack of systematically collected data, making documentation of trends difficult. 

Similar challenges occur in the NEP. 

 

4.1.5. Disease and predation  

 

4.1.5.1. Disease  

 

As with most large predatory sharks, there is no information available on disease in white 

sharks.  

 

4.1.5.2. Predation  

 

Predation typically varies with size, and large size is considered to provide some level of 

refuge from predation. Given the large size of white sharks at birth, their predation risk is 

likely to be relatively low and be restricted to killer whales and larger sharks. Their 

shallow near-shore habitat will likely also provide some level of protection. As adults, the 

only known predators are killer whales, with the first documented occurrence at 

Southeast Farallon Island in 1997 (Pyle et al. 1999). The overall level of predation on 

adult white sharks is likely very low.  

 

4.1.6. Environmental contaminants 

 

4.1.6.1. Contaminants 

 

Exposure to toxic chemicals, including PCB, DDT, and mercury, was identified by the 

petitioners as a potential risk factor for NEP white sharks. The vast majority of mercury 

contamination comes from urban runoff, although a significant amount of mercury is 

introduced through atmospheric deposition from local power plants, oil refineries, and 

motor vehicles (Schiff et al. 2000). PCB and DDT are included in a group of persistent 

organic contaminants that were used as industrial chemicals and pesticides in the United 

States and other countries around the world. From the 1950s to the 1970s, large amounts 

of organic contaminants were introduced to the marine environment through waste water 

treatment system outfalls off Los Angeles, California, from residential and industrial 

sources (Lee et al. 2002). Other Pacific coastal areas that have had relatively high levels 

of organic and inorganic contaminants over the past 50 years include Puget Sound and 

San Francisco Bay (Brown et al. 1998). Starting in the early 1970s, the production and 

use of PCBs, DDTs and other classes of persistent organic contaminants were banned in 

the United States, because of toxic effects on wildlife and laboratory animals. By the 

early 1980s, there was evidence that the concentrations of organic contaminants in 
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sampled fish along the U.S. West Coast had declined (Mearns et al. 1988). Despite this 

ban, evidence indicates that a high level of contamination still remains throughout the 

entire southern California Bight (Schiff et al. 2000).  

 

The contaminant loads found in NEP white sharks are high. In a study by Mull et al. 

(2012), the average liver concentrations of DDT in YOY white sharks found in southern 

California were 50-times higher than those observed in juvenile white sharks from South 

Africa’s east coast.  DDT and PCB liver concentrations in YOY white sharks were also 

much greater when compared to other larger, older shark species, such as the Greenland 

shark (Somniosus microcephalus) and the smooth hammerhead (Sphyrna zygaena) and 

comparable to local marine mammals.  Mull et al. (2012) also observed elevated levels of 

mercury in YOY and juvenile white sharks from the southern California Bight with 

higher concentrations of total mercury in the muscle than the liver. The high levels of 

pollutants are thought to be linked to maternal offloading (Mull et al. 2013).  

 

Even though elemental and organic contaminant levels are high in NEP white sharks, no 

deleterious physiological effects have been documented in elasmobranchs (Mull et al. 

2012).  In addition, no hepatic lesions or other visible effects have been observed with 

white sharks (K. Lyons, CSULB, pers. comm.).  Indications that high tissue contaminant 

levels are not causing problems at a population level are the apparent increase in other 

predators that have similarly high contaminant levels including the coastal stock of 

bottlenose dolphins, California sea lions and harbor seals (Section 4.1.2). For example, 

pollutant levels, especially DDT residues, found in Southern California coastal bottlenose 

dolphins have been found to be among the highest of any cetacean examined (O'Shea et 

al. 1980, Schafer et al. 1984).  The population has remained stable between 1996 and 

2005 (Dudzik et al. 2006). 

 

4.1.6.2. Plastic and marine debris  

 

Marine litter has become an increasing problem in the oceans, with plastic debris being 

the most abundant (Derraik 2002).  The main danger to sharks includes entanglement and 

ingestion.  Because they are lightweight and buoyant, plastics can be transported over 

long distances and in the North Pacific, massive volumes of plastic have accumulated in 

the North Pacific Gyre in an area termed the Great Pacific Garbage Patch (Rios et al. 

2010). This region is north of Hawaii and northwest of the offshore focal area where male 

sharks aggregate when offshore. While there is apparently limited direct overlap with the 

Great Pacific Garbage Patch and the off shore focal area, white sharks likely encounter 

marine debris both near shore and offshore. Given the low catch rates of white sharks, 

incidence of entanglement may not be apparent. However, no sharks at Guadalupe Island 

or caught in the southern California Bight have been reported to be entangled in marine 

debris. As for the risk of ingestion, sharks are capable of evacuating their stomachs, 

which may help reduce the impact associated with ingesting plastics. A shortfin mako 

shark caught on a longline was observed to evert and then retract its stomach 

(Brunnschweiler et al. 2011, S. Kohin, NMFS, pers. comm.). In addition, numerous 

satellite tags have been consumed by what are thought to be lamnid sharks (mako, 
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salmon, or white sharks) given the warm internal temperatures, and then regurgitated 

(Kerstetter et al. 2004). 

 

4.1.7. Global climate change  

 

Climate change could be manifested in many ways, but the two ways that have the 

greatest potential to impact white sharks are ocean acidification and warming ocean 

temperatures. 

  

4.1.7.1. Ocean acidification  

 

The anthropogenic increase in atmospheric concentrations of carbon dioxide (CO2) is 

causing a reduction in pH in the waters of the NEP. This has already been documented in 

coastal ecosystems. While the severity of the effects on specific species or the overall 

ecosystem are uncertain, changes to CO2 levels in the California Current marine 

ecosystem could adversely impact the marine food web. A number of direct impacts of 

ocean acidification have been documented for teleosts. For example, at elevated CO2 

levels and reduced pH, metabolic depression has been observed (Cruz-Neto and 

Steffensen 1997) as well as a reduced ability to detect olfactory cues, hindering predator 

avoidance and habitat selection in marine fish larvae (Munday et al. 2009, Dixson et al. 

2010). There are no data available on the direct impacts of reduced pH on sharks.  The 

impacts of ocean acidification on NEP white sharks remain speculative. 

 

4.1.7.2. Ocean warming  

 

Ocean temperature plays a key role in determining the pelagic habitat for many species. 

The exact impact of global warming is likely to be species-specific, and model results 

suggest a range of responses to predicted warming patterns. Hazen et al. (2012) examined 

the temperature preferences of 23 marine species, inferred from their current thermal 

habitat-use patterns, to estimate whether there would be changes in habitat associated 

with projected warming through 2100 in the NEP. Model results suggest an increase in 

white shark habitat of approximately 7%. For northern elephant seals, the model 

predicted a 5% increase in habitat, and for California sea lions a decrease of 

approximately 0.5% was predicted. Impacts are highly uncertain and likely more 

complicated, and the actual impact of global warming will also depend on how the 

foodweb changes. In addition, results focused on adult and subadult white sharks. If and 

how the habitat of juvenile and YOY white sharks would shift is not known. As with 

ocean acidification, the impacts of global warming on NEP white sharks remain 

speculative. 

 

4.2. Evaluation of threats to the NEP white shark population  

 

The BRT evaluated the threats discussed in Section 4.1 in terms of their severity and 

certainty.  Each threat was evaluated in terms of its current and future risk to the NEP 

white shark population and where appropriate, in terms of its historic risk over a time 

period considered to be appropriate by the BRT. The threats were grouped into five key 
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categories (e.g., habitat destruction, modification or curtailment, overutilization, etc.). 

Consideration of the future risk of threats was for a period of 60 years, which corresponds 

to 3 generations of white sharks.  The BRT also felt that for assessing threats, 60 years 

represented a biologically relevant time horizon for projecting current conditions into the 

future. 

 

The terms used in Table 4.5 are defined as follows: 

 

Threat Categories– Categories of threats corresponding to the statutory ESA Section 

4(a)(1)(A)-(E) factors considered in listing determinations.   

 

Threats – Those specific human or natural events/actions that may affect the past, 

present or future status of a species or population.  Threats were defined by time frame, 

as follows: 

 

 Historic Threats = threats that occurred in the past and may or may not be 

occurring presently. 

 Current Threats = threats that are occurring now. 

 Future Threats = threats that are likely to result in a mounting risk to the species 

in the future. These threats may or may not be occurring currently.   

 

The BRT evaluated the severity and certainty associated with each threat.  Severity and 

level of certainty were scored as a numeric value corresponding to high, medium, low or 

none (as defined below) by each BRT member. The mean value and standard deviation 

for the BRT are presented for each threat in Table 4.5. The BRT viewed this method as a 

more effective way to rank the threats than the plausibility point method used previously.  

 

Severity: Historic = the degree to which the threat is likely to have contributed to the 

decline of the population historically (over the prescribed time period).  Specific rankings 

for this category are defined as follows: 

 3 = High: The threat is likely to have seriously reduced the NEP population size. 

 2 = Moderate: The threat is likely to have moderately reduced the NEP 

population size. 

 1 = Low: The threat is likely to have only slightly reduced the NEP population 

size.  

 0= None: The threat is not likely to have reduced the NEP population size. 

 

Severity: Currently and Future (over the next 60 years) = the level of risk that this 

threat is likely to contribute to the decline of the population currently and in the future 

(over the next 60 years). Specific rankings for this category are defined as follows: 

 3 = High: The threat is likely to eliminate or seriously degrade the NEP white 

shark population. 

 2 = Moderate: The threat is likely to moderately degrade the NEP white shark 

population. 

 1 = Low: The threat is likely to only slightly impair the NEP white shark 

population. 
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 0 = None: The threat is not likely to impact the NEP white shark population. 

 

Level of Certainty: Historic and Current/ Future Risk Assessment = the level of 

certainty that the threat did affect, is affecting, or is likely to affect white shark 

populations.  Specific rankings for this category are defined as follows: 

 3 = High: There is definitive published and unpublished data to support the 

conclusion that this threat did affect, is affecting, or is likely to affect the NEP 

population with the severity ascribed. 

 2 = Moderate: There is some published and unpublished data to support the 

conclusion that this threat did affect, is affecting, or is likely to affect the NEP 

population with the severity ascribed. 

 1 = Low: There is little published and unpublished data to support the conclusion 

that this threat did affect, is affecting, or is likely to affect the NEP population 

with the severity ascribed. 

 0 =  None: There is no published or unpublished data to support the conclusion 

that this threat did affect, is affecting, or is likely to affect the NEP population 

with the severity ascribed. 

 

Current and Future Ranking of Threat Categories = The BRT’s overall ranking for 

each category of threats. Specific rankings for this category are defined as follows: 

 High: This threat category includes  a high number of threats that are moderately 

or very likely to contribute to the decline of the NEP white shark population, or 

contains some individual threats identified as very likely to contribute to the 

decline of the NEP white shark population. 

 Moderate: This threat category includes an intermediate number of threats that 

are likely to contribute to the decline of the NEP white shark population, or 

contains some individual threats identified as moderately likely to contribute to 

the decline of the NEP white shark population. 

 Low: This threat category includes a low number of threats that are likely to 

contribute to the decline of the NEP white shark population. 

 None: This threat category does not include any threats that are likely to 

contribute to the decline of the NEP white shark population.
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Table 4.5 Summary of the BRT Threats Evaluation. For each threat, the BRT ranked the historic, current, and future severity and certainty (3= high, 

2= moderate, 1= low, and 0= none). The average rankings and standard deviation are provided, as well as the BRT’s overall ranking for each factor.  

  Historic Threats Current and Future 

Threats 

 

Threat Categories Specific Threats Period of 

impact 

Severity Certainty Severity Certainty Current and 

Future Threat 

Ranking  

Habitat 

destruction, 

modification or 

curtailment 

Loss of prey (subadults and adults) 1800-1980 2.4 (0.5) 1.9 (0.4) 0.6 (0.5) 2.4 (0.5)  LOW 

Loss of prey (YOY and juveniles)  1970-2000 1.8 (0.7) 1.7 (0.5) 0.9 (0.4) 2.3 (0.5) 

Environmental contaminants   1950-2012 1.6 (0.5) 1.7 (0.4) 1.5 (0.5) 1.8 (0.4) 

Marine debris Considered as Current/Future Threat 0.6 (0.5) 1.8 (1.0) 

Overutilization: 

commercial, 

recreational or 

education 

High seas fisheries 1970-1992 2.1 (0.6) 1.5 (0.5) 1.1 (0.4) 1.8 (0.7) MODERATE 

Mexico's fisheries 1990-2011 2.1 (0.4) 1.6 (0.5) 2.1 (0.4) 1.5 (0.5) 

Coastal  net fisheries (off California) 1970-1994 2.0 (0.6) 2.0 (0) 1.0 (0) 2.4 (0.5) 

Recreational fisheries (off 

California) 

Up to 1994 0.6 (0.5) 2.3 (0.9) 0.6 (0.5) 2.4 (0.7) 

Small population 

concerns 

Allee effects: reproductive, genetic 

and demographic stochasticity 

 

 

Considered as Current/Future Threat 

0.9 (0.4) 1.9 (0.6) LOW 

 K- selected life history strategy 1 (0) 2.4 (0.5) 

Stochastic and catastrophic events 1 (0) 2.1(0.6) 

Heavily depleted  1.4 (0.5) 1.8 (0.7) 
Disease or 

predation 

Disease  

Considered as Current/Future Threat 
1.0  (0.5) 1.1 (1) LOW 

Predation 0.5  (0.5) 2.1 (0.8) 

Inadequacy of 

existing regulatory 

mechanisms 

  

Considered as Current/Future Threat 
1.3  (0.5) 2.3 (0.7) LOW 

Other Ocean acidification  

Considered only as a Current Threat 

 

1 (0) 0.8 (0.7) LOW 

Global warning 1 (0) 1.0 (0.5) 
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4.2.1. Summary of threats assessment 

 

Table 4.5 summarizes the BRT's assessment on the severity of individual threats to the NEP 

white shark population, based on the team’s evaluation of the best available information 

regarding these threats.  This assessment helped the BRT identify which threats should be 

incorporated into subsequent population analyses and informed the final assessment of extinction 

risk. The ranking indicates that the BRT considers the overall risks associated with climate 

change, disease and predation, habitat degradation, and small population size constitute low level 

threats to the NEP white shark population both now and within the next 60 years. Conversely, 

the BRT concluded that overutilization of white sharks as a result of fisheries bycatch is a 

moderate threat to the population, particularly as a result of bycatch in coastal fisheries off 

Mexico.  The BRT felt that high-seas drift net fisheries and coastal gillnet fisheries presented a 

moderate threat to the population in the past (i.e., these fisheries were likely to have moderately 

reduced the population size of NEP white sharks). Since the early 1990s, however, changes to 

U.S. and international fisheries and their management have reduced the severity of impacts and 

the level of perceived threat. Changes have also been made to fisheries regulations in Mexico for 

the protection of white sharks, but their effectiveness is uncertain. Thus, the BRT continued to 

rank as a moderate threat to the population currently and into the future. For many threats (e.g. 

disease and global warming), the BRT felt there was only limited information to inform its 

evaluation and so expressed a relatively high degree of uncertainty associated with its evaluation.  

 

 

4.3. Trend Information for the NEP white shark population 

 

Trend information is considered to be highly informative in assessing the extinction risk facing a 

population (Musick et al. 2000, IUCN 2001).  Below we summarize the available trend 

information for the NEP white shark population from a variety of different sources.  Direct 

indictors of trends include analyses of fisheries catch and effort data and the photo-ID study at 

Guadalupe Island. Indirect indicators of trends include reports of white shark attack frequency on 

marine mammals and considerations regarding possible range expansion of the population.  

 

4.3.1. Fisheries data 

 

Catch data for U.S. fisheries provide an opportunity to examine trends in the NEP white shark 

population (see Section 4.1.1). Population trends can be evaluated by examining trends in CPUE 

which commonly serves as an index of relative abundance. For the CPUE analysis, the BRT 

focused on the California set net fishery which has accounted for a majority of the white shark 

bycatch off California since the early 1980s (see Section 4.1.1.3).  Across the entire time series 

of available logbook data (1981 to 2011), CPUE in the set net fishery (calculated as the reported 

catch divided by the number of sets per year) appears to have declined from the early 1980s 

through the mid-1990s and generally increased since the mid-1990s (Figure 4.5, [can also refer 

to Table 4.3 of bycatch estimates in the fisheries bycatch section (Section 4.1.1)]).  The period of 

increasing CPUE has coincided with a steady trend in decreasing fishing effort.  It is possible 

that increasing CPUE during the 2000s could be due to increased reporting rates associated with 

the MBA program (see Section 4.1.1.3 and Appendix D), however, an increase in reporting rates 
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does not seem to fully account for the trend (see Section 4.1.1.3).  Average soak time per set in 

recent years has also increased, further complicating the interpretation of CPUE trends.  

 

The CPUE in 2011 was low in comparison to the previous years. The low number of sharks 

caught in 2011 (n=5) may be linked to cooler waters reported that year but a more in-depth 

analysis of environmental conditions across years is required. In 2012 the catch of sharks again 

increased and 12 sharks were reported in the MBA program (Winkler pers com.). These data 

were not included in analyses conducted in the status review because of the BRT’s concerns 

about a reduction in involvement due to fishermen’s concerns about the ESA listing petitions. 

Also in 2012 the vessel with the highest catch rate (average of 5.75 white sharks per year in 

comparison to 0.7 sharks per year for the rest of the fleet) left the fishery and consequently 

reported no catch.  

 

 
Figure 4.5 White shark CPUE data (+/- SD) for the California set net fishery from 1981-2011 as well as the 

total number of sets in each year compiled from fishery logbook data.  

 

Over the course of the time series soak times increased in the set net fishery. To examine the 

potential impact of soak time on trends, the BRT used multiple linear regression to examine the 

impacts of both year and soak time on CPUE. To be conservative in light of potentially increased 

reporting rates since 2002, analysis was limited to data from1994-2001. Over this period the 

regulatory framework impacting set net fisheries catching white sharks did not change.  Based on 

this analysis the BRT found there was a significant increase in CPUE over time and that soak 

time was not a significant factor (Figure 4.6).  

 

It should be noted that currently the fishery is operating in only a subset of the white shark 

nursery habitat in the southern California Bight.  A comparison of the distribution of fishing 

effort and YOY white shark habitat in the southern California Bight shows that heavy fishing 

now occurs in 28% of the CDFW spatial blocks (spatial blocks are as shown in Figure 4.2) that 

overlap with YOY white shark habitat based on information from SPOT tagging (C. Lowe, 

CSULB, pers. comm.). 
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Figure 4.6 Regression analysis fit of white shark CPUE by year for the California set net fishery. The increase 

in CPUE with year from 1994-2001 is significant (p-value 0.017). 

 

 

4.3.2. Guadalupe Island Photo-ID  

 

The white shark photo-ID study conducted at Guadalupe Island provided the opportunity to 

examine trends in abundance over a period of 11 years. There were only sporadic sightings of 

white sharks at Guadalupe Island in the early 1990s (Domeier, MCSI pers comm) despite the 

regular presence of sport fishers. The photo-ID study was only initiated after white sharks 

sightings were sufficiently consistent to support a cage diving industry (Section 2.2.2.1). Thus, 

the photo-ID study was not initiated until after the number of white sharks at Guadalupe Island 

had begun to increase.  As noted in Section 4.4.2 there was a substantial increase in estimated 

abundance at the site from 2001 – 2011 (Figure 4.11).  Annual abundance estimates increased 

from ~ 40 in 2001 to over 90 in 2011. For males, this pattern occurred throughout the duration of 

the time series.  For females, estimated abundance increased for the first several years before the 

estimates stabilized. 

 

   

4.3.3. Trends in attacks on marine mammals and humans 

 

Observations of white shark attacks on marine mammals have been documented at Southeast 

Farallon Island since the 1980s providing a relatively long time series of information. Over the 

last 30 years researchers working at Southeast Farallon Island have published a number of papers 

reporting an increase in white shark abundance around the islands based on the incidence of 

attacks on pinnipeds. Ainley et al. (1985) suggested that white shark populations were increasing 

in association with the increase in northern elephant seals at Southeast Farallon Island, and they 
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also reported an increase in the size of white sharks. Elephant seals were first seen at Southeast 

Farallon Island in the 1970s after which their presence at the island increased (Stewart et al., 

1994). McCosker (1985) reported an increased incidence of white shark attacks on humans that 

they linked to an increase in white shark populations. These data were, however, confounded by 

the fact that more humans were likely spending more time in the water. At a 1996 white shark 

symposium Pyle et al. (1996) and Klimley and Anderson (1996) all concluded that white shark 

populations at Southeast Farallon Island were increasing given the increased number of attacks 

on pinnipeds even after accounting for the increase in pinniped populations that occurred during 

the 1970s and 1980s. In a more recent paper, Brown et al. (2010) found that variation in white 

shark attacks on northern elephant seal was correlated with the number of elephant seals present 

during the autumn haul-out. That their estimated white shark abundance index explained very 

little annual variation in attacks could indicate a stable white shark population or that their index 

does not accurately reflect annual variation in white shark abundance. 

 

White shark attacks on marine mammals in other locations have also increased. At San Miguel 

Island, annual surveys of pinniped populations have been ongoing for decades (Jeff Harris, 

SWFSC pers. comm.). The Channel Islands are home to more than 100,000 California sea lions, 

a larger population than is found off central California. It is only in the last couple years that 

there has been evidence of attacks by white sharks on pinnipeds at these islands. While not all 

bite marks have been examined, a preliminary analyses shows that marks are consistent with a 

white shark bite. The increase in shark inflicted wounds is dramatic. In 2010 and in prior decades 

there were essentially no observed wounds on California sea lions. However, in 2011 there were 

around 136 recorded bite marks, and in 2012 there were over 300 bite marks recorded (Jeff 

Harris, SWFSC, pers. comm.). The wounds are observed primarily in June-August (Figure 4.7), 

although the occurrence of scars early in the year suggest that attacks may occur year around. 

Interestingly, wounds were primarily observed on juveniles and females. Given the known 

differences in their foraging range, with males migrating to areas north of Monterey Bay (Melin 

et al. 2010), this suggests that the attacks are occurring closer to the Channel Islands, within the 

foraging range of a lactating female. While the Channel Islands also produce 80% of the elephant 

seal pups in California, very few lesions were noted on elephant seals. 

 

  
Figure 4.7 Total number of white shark-inflicted wounds (healing and fresh wounds) observed on California 

sea lions at San Miguel Island in 2011. Data for 2012 have not yet been fully analyzed (Jeff Harris, SWFSC, 

pers. comm.).  
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In addition to pinnipeds, white shark bite marks have been observed on southern sea otters 

(Enhydra lutris nereis) in central California. Researchers at the U.S. Geological Survey Western 

Ecological Research Center (USGS-WERC) report a dramatic increase in the number of 

mortalities linked to white shark bites over the past 5 years, particularly in the region between 

Estero Bay and Pismo Beach, although increases have also been seen in Monterey Bay and areas 

north of Santa Cruz. Overall the proportion of beach-cast sea otter carcasses for which shark 

bites were the primary cause of has increased 3-4 fold over the past 5 years, compared to the 

long-term average (1983-2000). Shark-bite trauma has now become the single most frequently 

observed cause of death (USGS-WERC, unpublished data, 

(http://www.werc.usgs.gov/ProjectSubWebPage.aspx?SubWebPageID=22&ProjectID=91). 

Although definitive evidence for the species of shark responsible for the trauma is only available 

for 10-20% of carcasses (i.e. where tooth fragments or tooth scrapes on bone are found), in all 

such cases the evidence indicates white sharks as the species responsible for the trauma, with no 

evidence found as of yet to indicate other shark species. While other factors are likely impacting 

sea otter population trends in California, the increased level of shark-bite mortality is thought to 

be linked to sea otter population declines in some regions.  

 

For both sea otters and sea lions it is difficult to differentiate whether the increase in encounters 

is associated with an increase in the population or a shift in habitat or foraging strategy. It could 

also be a combination of these factors. One factor that could provide some insight is whether the 

rate of increase is too fast to be explained by an increase in abundance. This is made difficult by 

the lack of information on the frequency of successful and failed predatory events that would 

provide some insight into how encounters may translate into numbers of sharks. One important 

point is that there is no noted decrease in white shark interactions in other locations. The 

uncertainty in how the increase in encounters translates into a change in abundance is reflected in 

the SEDM voting process on population trends.  

 

Reports of shark attacks on humans are archived by a number of organizations.  Data from the 

International Shark Attack File (http://www.flmnh.ufl.edu/fish/sharks/ISAF/ISAF.htm), the 

Global Shark Attack File (http://www.sharkattackfile.net/incidentlog.htm), and a published book 

on shark attacks of the North America Pacific Coast (Collier 2003) have been summarized in 

Figure 4.8.  The BRT received spreadsheets of the data directly from the database manager of the 

International Shark Attack File and from R. Collier, the author of the published book, and 

downloaded data from the Global Shark Attack File website.  The data were filtered to include 

only unprovoked attacks that were confirmed attributed to white sharks along the coasts of 

Alaska, Washington, Oregon and California.  As the 3 sources are presumably making an effort 

to tabulate all attacks, the majority are expected to be represented in each of the databases.  In 

fact, the databases do cross reference each other’s listings for a large number of the documented 

attacks.  Although there are some differences, perhaps due to the criterion used to distinguish a 

provoked vs. an unprovoked attack, or the confidence with which a definitive identification of 

the species could be made, the data show a slightly increasing trend in the number of attacks by 

year.  When examined by decade, the trend becomes more apparent.  However, it is important to 

note that the increase in white shark attacks cannot alone be used to indicate an increase in the 

number of white sharks present along the U.S. West Coast.  Since the 1950s, there has been 

marked population growth with greater numbers of people utilizing the ocean for recreation, as 

well as enhanced media coverage through the internet and social media networks.  The BRT did 

http://www.werc.usgs.gov/ProjectSubWebPage.aspx?SubWebPageID=22&ProjectID=91
http://www.flmnh.ufl.edu/fish/sharks/ISAF/ISAF.htm
http://www.sharkattackfile.net/incidentlog.htm
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not consider the increase in the number of shark attacks to be an indicator of an increase in the 

white shark population.  

 
Figure 4.8  The number of unprovoked white shark attacks along the U.S. West Coast recorded since 1950 by 

year (left) and decade (right).  The data are from three sources with a high degree of overlap: the Global 

Shark Attack File (GSAF), International Shark Attack File (ISAF), and Collier, 2013.   

 

 

4.3.4. Range 

 

In addition to evaluating trends in abundance and other indicators, information on range 

expansion or contraction can provide insight into the status of a population.  Range expansion is 

typically thought of as when a population uses new areas or sites outside of its current range, but 

can also include an expansion in high use of areas or sites within a population’s current range.  

The increase abundance of white sharks at Guadalupe Island over the past 20 years suggests 

there may have been a geographic expansion of the core near-shore aggregation sites. In 

addition, the increase in white shark bite marks on sea lions and sea otters south of Monterey 

Bay suggests an increased presence of white sharks in this region. While the coastal waters from 

the Channel Islands to Monterey Bay are clearly within the historical range of white sharks along 

the coast of California, the majority of white shark activity in the last 10 years has been reported 

at Guadalupe Island and central California sites. 

 

4.3.5. Evaluation of trend information 

 

The BRT used the SEDM process to evaluate whether or not the available trend information 

indicates the NEP white shark population abundance is increasing, decreasing, or stable while 

also assessing the BRT's level of uncertainty.  Overall, the BRT concluded strongly that the 

available information supports that the NEP white shark population is either increasing or stable 

(71% of plausibility points, Table 4.6) rather than decreasing (6% of plausibility points). Other 

information the BRT felt was consistent with their determination that the population is increasing 

included: recent increases in marine mammal and fish prey resource for all life stages and 

changes in near-shore and high seas fisheries that have reduced fisheries impacts. As mentioned, 
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the human attack data did not influence the assessment of trends.  The BRT expressed a 

moderate level of uncertainty (23% of plausibility points) about whether the available 

information supports a determination that the population is increasing due to the lack of historic 

information on abundance, uncertainty about female mortality levels, and uncertainty about 

whether there have been changes in the white shark range or foraging strategies rather than an 

increase in the overall population size.  Individual plausibility point allocations and arguments 

for the difference categories are in Appendix E. 

 
Table 4.6  SEDM voting results regarding whether the NEP white shark population is increasing, decreasing, 

or stable. The average plausibility points out of 100 per category across all BRT members are shown.  

 

 Increasing Stable Decreasing Uncertain 

Avg % 42 29 6 23 

Stdev 6.5 9.4 8.6 16 

   
 

4.4. Population abundance and assessment of extinction risk  
 

4.4.1.  Overview of approach used by BRT 

 

A critical element of this status review is an assessment of the current and future extinction risk 

of the NEP white shark population. Information needed to conduct a quantitative assessment of 

extinction risk include estimates of adult female abundance, population vital rates corresponding 

to maximum potential population growth, and assessments of human-caused mortality on 

population growth. The BRT’s assessment of threats to the NEP white shark population 

concluded that fishery bycatch was the most highly ranked threat, and therefore, the focus of the 

quantitative risk assessment was on evaluating impacts of fishery bycatch on the population over 

time.   

 

Few of the parameters necessary for a risk assessment have been well-quantified for white 

sharks, so the BRT undertook the following process to obtain plausible estimates (also see Figure 

4.9): 

 

1) The BRT's first objective was to define plausible ranges of the true NEP white shark 

abundance, with an emphasis on estimating adult female numbers.  As discussed below 

(Sections 4.4 and 4.5), the BRT concluded that the available published estimates for NEP 

white shark abundance necessitated some level of correction to account for potential 

sampling biases that likely resulted in underestimating both the NEP population and the 

total abundance of adult females. The BRT therefore re-analyzed the original (but since 

updated) abundance data to re-estimate abundance for the adult female component of the 

sampled population.  Based on this re-analysis and a consideration of other information, 

the BRT then defined several plausible types and levels of sampling-bias which were 

used to develop a range of true adult female abundance estimates. 

 

2) To develop estimates of true female abundance, the BRT first used a SEDM evaluation 

process to express its uncertainty regarding specific types and levels of sampling bias 

associated with the current white shark abundance estimates (Section 4.4.3).  The results 
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of the SEDM process were used to calculate 48 alternative abundance estimates each 

having different weights based upon the BRTs assessment of bias.  These abundance 

values were ranked and then grouped into four female abundance categories defined by 

an upper and lower limit (60-125; 125 – 200; 200 – 400; 400-1600).  The sum of weights 

for abundance values within each category provided a total weight associated with that 

abundance range and these weights represented the BRT’s collective view about which 

abundance category most likely included the true abundance of female white sharks in 

the NEP. 

 

3) Population viability analyses (PVAs) were conducted for each female abundance 

category described above.  In addition to using female abundance inputs, these analyses 

required information about demographic vital rates and estimates of fisheries bycatch 

mortality.  Empirical bycatch mortality estimates were available for YOY and juvenile 

white sharks (see Section 4.1.1) but not for larger subadults and adults, and therefore, the 

BRT conducted a SEDM assessment to define and assign weights to 5 plausible levels of 

annual adult female bycatch in fisheries (Section 4.4.4).  Combining these 5 bycatch 

scenarios with the 4 abundance categories described above resulted in 20 population 

viability models that were used to conduct PVA.  The PVA results provided the 

probability of adult female abundance falling below specific thresholds in specific 

timeframes as a function of female population size and fishery bycatch level. The BRT 

defined four extinction risk levels (High, Medium, Low and Very Low) that incorporated 

different abundance thresholds and timeframes and then evaluated the PVA results 

against these risk levels.   Each outcome from the 20 models corresponded to High, 

Medium, Low, or Very Low population extinction risk (as defined by the BRT in Section 

4.5.2.3).   

 

4) Results of the PVA provided important information to the BRT about the feasibility of 

different scenarios for abundance bias.  Specifically, existing estimates of YOY and 

juvenile bycatch were incompatible with some of the lowest abundance scenarios that the 

BRT initially considered in the modeling exercise.  In light of the new insights provided 

by the model results, BRT members re-evaluated bias regarding the proportion of the 

NEP population that is available for photo-ID at the aggregation sites.  The new weights 

were propagated through the PVAs, resulting in revised weights for the 20 PVA models 

and four risk categories. 

 

5) The results of the PVA exercise reflected the BRTs conclusion about risk to the NEP 

white shark population associated with fisheries-related mortality, but did not consider 

any other information that might influence perception of risk.  The BRT therefore 

conducted a final SEDM assessment (Section 4.6) to evaluate overall extinction risk 

taking into consideration the PVA modeling outcomes, trend data or the influence of 

other threats on extinction risk.  This assessment resulted in the BRT’s final conclusion 

about the likelihood of the NEP population being at risk of extinction currently or in the 

foreseeable future. 

 

These steps are described in detail below (also see Figure 4.9). 
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Figure 4.9  Flow diagram for the process used to examine bias in sex ratio and population abundance and to 

ultimately evaluate the plausibility of different risk models.  Starting from the upper left, the number of adult 

females from each study site (GI = Guadalupe Island, CC = central California) is multiplied by the sex ratio 

multiplier options (3 options for GI symbolized by the ‘3’ above the ‘xSR’ diamond, and 4 options for CC) to 

result in 12 plausible total abundance estimates for the study sites (NEP photo).  The weights for each of these 

options results from the SEDM Sex Ratio plausibility point allotment.  The NEP abundance estimates were then 

multiplied by a bias factor to account for the potential number of sharks that do not come to either study site 

(diamond ‘B’ for bias with plausibility points resulting from the SEDM bias allotment).  The 4 bias multipliers 

resulted in 48 abundance combinations that were then ranked from lowest to highest and broken into 4 categories 

to represent ranges of possible abundance (N).   Population Viability Analyses were run for the 4 abundance 

categories and for 5 plausible levels of annual adult bycatch (ranging from 0 to 10) to a total of 20 models.  For 

each model the following output was used in evaluating risk:  YOY catch rate (now), and N at the following times:  

now, 40, 60 and 100 years.  Following the initial analysis the BRT re-voted on the bias options.  This re-vote did 

not change the models that were run but rather the weight assigned to each of the 20 models.  The percent of the 

runs that met various criteria determined whether that particular model would qualify as high (red), medium 

(orange), low (yellow) or very low (none of the above and not shown). 
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4.4.2. Mark-recapture analyses 

 

4.4.2.1. Background 

 

The white shark listing petitions submitted to NMFS cites an estimate of approximately 339 

subadults and adults in the NEP. This estimate is based on using mark-recapture methods in 

published photo-ID studies at two sites in central California (the Farallon Islands and Tomales 

Point) (Chapple et al. 2011) and one site at Guadalupe Island (Sosa-Nishizaki et al. 2012). 

Concern that the number of adults and subadults is only 339 individuals was a primary 

motivation for both listing petitions. Consequently, the BRT re-examined the Guadalupe Island 

and central California datasets as well as additional data provided by the researchers at each 

study site.  

 

Using mark-recapture data to estimate the population size of white sharks in the NEP relies on a 

number of assumptions: 1) animals do not lose their marks with time; 2) sampling time is 

negligible compared to mixing time; and 3) all individuals modeled as a single category (i.e., 

gender in models that include it as a factor) have the same survival probability (Cooch and White 

2011).  The most important final assumption 4) is that all members of the population being 

estimated (all subadult and adult sharks in the NEP) have equal probabilities of being 

photographed at the study sites. To address the validity of this assumption requires information 

on demographic, temporal and spatial patterns throughout the population's range relative to the 

area where sampling occurs.  This information is challenging to obtain given that the vast 

majority of studies on NEP white sharks have occurred in just two study areas. However, new 

data on size and sex ratios made available to the BRT by research groups working both at 

Guadalupe Island and in central California provided some insight into relevant demographic 

information. 

 

The BRT’s goals for analyzing the photo-ID data from the two aggregation sites were to: 1) 

reexamine both datasets in addition to newly available data, 2) evaluate the potential bias in the 

NEP white shark population estimates by examining the demographics at each site and the 

assumption about equal probability of capture, 3) examine trends in abundance at Guadalupe 

Island and estimate parameters characterizing the population dynamics at this site, and 4) 

calculate lower bounds for estimates of female abundance and the male-female sex ratios in the 

NEP.  

 

For a detailed description of the methods of the mark-recapture analyses, see Appendix F of this 

report. The sections below provide an overview of the methods and the main results and 

conclusions from the analyses.   

 

4.4.2.2. Methods 

 

The BRT was provided with the raw mark-recapture datasets from research groups working at 

the central California and Guadalupe Island study areas, including new size and sex data when 

available. The central California data used by the BRT were the same as used in the analysis by 

Chapple et al. (2011), but with updated information about the sex of many animals that was not 

previously known. The Guadalupe Island data used by the BRT included two more years of data 
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than were used by Sosa-Nishizaki et al. (2012) as well as additional data on the number of days 

of sampling effort per month (Appendix F, Table 2). This allowed the modeling analysis to 

incorporate changes in sampling efforts later in the year when females are more likely to be seen.  

Mark-recapture modeling analysis for data from both sites was conducted using POPAN open 

population models. POPAN (POPulation ANalysis http://www.cs.umanitoba.ca/~popan/) is a 

model that estimates population size from mark-recapture data without requiring the assumption 

that the population was closed during the study period. A closed model is one in which the 

population is not allowed to change in size whereas in an open model the population is allowed 

to change in size through emigration, immigration, recruitment or mortality.  Chapple et al. 

(2011) used a closed population model for their mark recapture analysis, but the BRT felt that an 

open model was more appropriate. The open mark-recapture models provide an estimate of 

population size, an estimate of apparent survival (φ) of animals in the population (i.e., proportion 

of animals that return to the site in subsequent year where animals can either be lost to mortality 

or permanent emigration), and the probabilities of detection (p) and recruitment (pent).  

 

A total of 3 datasets were modeled 1) the 3-year dataset for central California (2006 - 2008), 2) 

the complete 11-year dataset for Guadalupe Island (2001-2011), and 3) a 3-year subset (2006-

2008) of the Guadalupe Island data. For each dataset, alternative model configurations 

(combinations of input parameters) were evaluated with the best models selected based on AICc 

which is a measure of how well a model describes the patterns in the data (i.e., goodness of fit). 

The different model configurations included various combinations of parameters that either did 

not vary or varied with time and sex, with and without interaction terms. For the models based 

on the final 11-year Guadalupe dataset, parameter values were evaluated from the best models 

with and without covariates for total days of sampling effort per year, and a covariate for the 

monthly proportion of sampling effort that occurred in November to December.  

 

4.4.2.3. Results and conclusions 

 

Demographics:  

Size and sex data of white sharks at both aggregation sites were examined to characterize the 

demographics of the sharks “captured” in the photo-ID studies. At both study areas the majority 

of white sharks were mature and the sex ratio was biased towards males (Figure 4.10). The 

overall ratio of female to male sharks (adults and subadults) documented in the photo-ID 

database at Guadalupe Island as of 2012 was 1:1.6 although the sex ratio changed seasonally 

(Section 4.4.3). At the two sites in central California the female: male sex ratio was 1:3.8, 

although this could change once the gender for additional white sharks is eventually determined. 

The percentage of mature white sharks at the central California sites was ~ 85% (Figure 4.10) 

with 57% of females being mature. At Guadalupe Island the most reliable size data come from 

SPOT tagging efforts where animals are actually measured. Based on this dataset, 90% of white 

sharks at Guadalupe Island are estimated to be mature; however, this estimate may be biased by 

the use of whale blubber as bait which was used in the later years of the study and appeared to 

attract larger animals. In the first year of the study, fish was used as bait, which likely attracts 

smaller individuals. Earlier estimates that 60% of the sharks at Guadalupe Island were mature 

(Domeier and Nasby-Lucas 2007) were based on rough estimates of length and are likely 

unreliable (N. Nasby-Lucas, MCSI, pers. comm.). The actual portion of the Guadalupe Island 

white sharks observed that are mature is most likely somewhere between 60% and 90%.  

http://www.cs.umanitoba.ca/~popan/
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Figure 4.10  Number of mature and immature males and females at the sites in central California (left) 

and at Guadalupe Island (right). Size at maturity is assumed to be 12 ft. for males and 15 ft. for 

females.  Data from central California and Guadalupe Island courtesy of S. Jorgensen and N. Nasby-

Lucas, respectively.   

 
 

These data suggest that mature males are the dominant component of the population available at 

both aggregation sites given the sampling designs that have been used.  Potential biases that 

could explain the relatively low number of mature females in the datasets are discussed in 

Section 4.4.3. There are a number of reasons why fewer subadults than adults may be 

documented at the two study areas. White sharks are known to exhibit a size-based dominance 

feeding hierarchy with the presence of larger individuals causing smaller animals to leave the 

area which would impact the capture probability of subadults (Goldman and Anderson 1999, 

Sperone et al. 2010, Domeier 2012). Subadults may also be less likely to visit the two 

aggregation sites if they have not yet started feeding on marine mammals or begun to seek mates. 

In short, the results of demographic analysis suggest that subadult white sharks do not have an 

equal probability of capture in the two study areas when studies are conducted and consequently 

that the number presented in the petition does not include all subadult white sharks in the NEP.  

 

Abundance estimate for central California aggregation sites, 2006-2008:  

A total of 131 white sharks (21 female and 81 males) were recorded in the photo-ID studies 

conducted at the two sites in central California from 2006-2008. Using these data, the BRT used 

a POPAN model to estimate the “super-population” of NEP white sharks at the two central 

California sites over the 3 year time period. A super-population represents all the individuals that 

were at the site during the study, including those that have since died or emigrated from the site. 

Given that the time series includes only three years of data and that mature females visit semi-

annually the values calculated by the POPAN model for survival (ⱷ), the probability of detection 

(p) and entry (pent) are not reported. The BRT’s population model generated a mean 3-year 

super-population estimate of  166 white sharks at the two central California sites over the 3 year 
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period from 2006 – 2008, including 25 (9) females, 97 (28) males, and 44 (120) individuals 

of unidentified sex. For comparison, Chapple et al.’s (2011) closed model generated a mean 

abundance estimate of 219 white sharks at the central California sites, with a “credible” (95% 

confidence) range in estimates of 130 to 275 white sharks. Thus, the BRT model’s mean estimate 

was within the credible range of the abundance estimates generated by Chapple et al.’s (2011) 

model.  In the supplement, Chapple et al. (2011) report the results for a number of different 

models including an open population model (Jolly-Seber), similar to the POPAN model. The 3-

year super population estimate for this model was 156 sharks, also similar to the results from the 

POPAN model run by the BRT.  

 

To calculate the number of adult females at the central California sites, the BRT used the 

POPAN model results, information about sex ratios (estimated to be 26% female) and proportion 

of females considered to be mature (estimated to be 57%) (Figure 4.10). Of the estimated 

number of females at the sites, the BRT calculated that 14 were adult females (25 females*0.57 

mature = 14).  For the estimated number of individual of unknown sex at the sites, the BRT 

calculated that 6 were adult females (44 individuals*0.26 female*0.57 mature = 6).  In total 

therefore, the BRT estimated there were 20 adult females at the two central California study 

areas.  

 

Abundance estimates for Guadalupe Island, 2001 - 2011:  

During the eleven year study period from 2001 to 2011 at Guadalupe Island, a total of 142 white 

sharks (54 females and 88 males) were recorded in the Guadalupe Island photo-ID database. The 

BRT’s best super-population estimate for white sharks at Guadalupe Island from 2001 to 2011 

was 154 which included 62 (±6) females and 92 (±5) males. Due to the incorporation of two 

additional years of data and the increasing population trend at Guadalupe Island, this estimate is 

higher than the super-population estimate of 120 white sharks reported by Sosa-Nishizaki et al. 

(2012). The BRT also estimated the super-population size from 2006-2008 for Guadalupe Island, 

to be consistent with the analysis for the central California study. Over this period, the estimated 

white shark super-population size for Guadalupe Island was 84 white sharks, including 52 males 

and 32 females. Using the estimated proportion of mature individuals at the site (85%) from 

Figure 4.10, the BRT calculated that there were 27 mature females at Guadalupe Island (32 

females*0.85 mature females). The female:male sex ratio over this three year period was 1:1.7.  

 

Because of the longer time series of data available in the Guadalupe Island study (11 years) 

compared to the central California study (3 years), the BRT also used the population model to 

examine other population parameters mentioned above (annual population size, survival, the 

probability of detection and entry).  Trends in the estimated annual population size at Guadalupe 

Island showed an increasing trend in the annual abundance of males from 2001 to 2011 with the 

estimated number of males essentially doubling over the 11-year period from about 30 to about 

60 individuals (Figure 4.11).  Estimated numbers of females also showed an increasing trend for 

the first several years of the study before stabilizing during the later years of the series. Changes 

in sampling  are likely to have influenced the annual female abundance estimates after 2007 

(Figure 4.11) given the late arrival time of females (Figure 2.4) and reduced sampling in 

November and December (Appendix F, Table 2) later in the time series.  
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Based on the model, apparent survival varied by year and by sex and was lowest in 2005 and 

2009.  Females had lower apparent survival values than did males (mean was 0.93 for males and 

0.9 for females; median was 0.98 for males and 0.95 for females), indicating that emigration 

and/or mortality are higher for females than for males Whether emigration or mortality is driving 

this difference cannot be determined from these models. The probability of detecting a white 

shark given that it was present (p) also varied by sex, by sampling effort per year, and the 

proportion of sampling effort during November to December (since males return to Guadalupe 

Island in July/August and Females return September/October) (see Figure 2.4). The detectability 

of females was lower (~0.5) and more variable than for males (~0.6). The probability of 

entry/recruitment (pent) was a constant value of 0.07 for both sexes indicating that new male and 

female white sharks entered the population at the same rate. 

 

 
Figure 4.11 Population model estimates of the numbers of white sharks present (N) each year at Guadalupe 

Island from 2001 to 2011. Error bars represent ± one standard error (SE). Female abundance estimates are 

indicated in red, males in blue. The models included a sex-specific covariate for monthly sampling effort.  

 

Combined adult female abundance estimate for central California and Guadalupe Island: 
Combining estimates from the two study areas yields an adult female estimate of 47 for the 

period 2006 - 2008. To calculate a variance around this estimate for use in subsequent models 

the BRT used a parametric bootstrap approach.  For each bootstrap sample, random abundance 

values were drawn from the mark-recapture estimates at each study area (which assumed normal 

distributions with corresponding means and coefficients of variation), along with random values 

for the proportion of unknown-gender animals from central California that were female and the 

proportion of females that were mature (using appropriate beta distributions). The resulting 

combined estimate was 47 ± 4.1. 

 

The BRT's re-analysis of the photo-ID data from central California and Guadalupe Island 

provided female abundance estimates for the two sites as well as other information needed for 

the population modeling analysis discussed in Section 4.5. A key question, however, is whether 

or not the estimates for the two aggregation sites include all subadult and adult white sharks in 

the NEP.  The BRT's examination of the demographic data for the central California and 
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Guadalupe Island provided important insights into potential sources of bias that relate to this 

question. As previously discussed, the white shark populations at both sites are dominated by 

mature males and are underrepresented in terms of females and subadult sharks.  The BRT 

considered this demographic data as well as other information and concluded that the population 

estimates for the two sites do not represent the actual numbers of subadult and adult white sharks 

in the NEP. However, the estimates for central California and Guadalupe Island do provide a 

lower bound estimate of the numbers of white sharks at these sites and both the abundance 

estimates and observed sex ratios were used by the BRT to characterize bias in sex ratio and the 

NEP white shark population size as discussed in the following section.  
 

4.4.3. Assessment of bias in sex ratio and abundance estimates 

 

Given the apparent skew in the sex ratios found in central California and at Guadalupe Island 

based on the demographic data and associated concerns about bias in the studies, the BRT 

concluded that the direct empirical estimates of adult female abundance from the photo-ID study 

areas likely underestimated true adult female abundance in the NEP.  To address this 

underestimation and generate estimates of the total number of adult females for use in the 

population modeling, the BRT used SEDM to characterize the magnitude of potential bias. The 

first step in this process was to characterize the bias in the observed sex ratios in order to 

estimate the total number of adult females at the two study sites. The second step was to 

characterize what proportion of adult females in the NEP population as a whole, do not visit the 

aggregation sites so that a total NEP population abundance could be estimated.   These two 

SEDM exercises are described in the following sections. 

 

4.4.3.1. Sex ratio bias 

 

Background:  
At the central California and Guadalupe Island study sites, the photo-ID data are dominated by 

observations of males. Based on the available data, the observed female to male sex ratio for 

mature white sharks was 0.6 at Guadalupe Island and 0.2 at the central California sites.  There 

are several possible explanations for the observed skew in the sex ratios including a number of 

potential biases linked to the assumption that males and females have an equal probability of 

capture. A more detailed description of these is provided by Sosa-Nishizaki et al. (2012). 

Possible explanations for the skewed sex ratio are discussed below and were used by the BRT to 

inform its SEDM assessment of sex ratio bias.  

1) The population is truly skewed, which would be possible if female mortality is 

substantially higher then male mortality (sex ratios of pups are close to parity, indicating 

that the skew is not due to more males being born than females). This differential 

mortality would have to occur throughout the juvenile stages, prior to the subadult phase 

because the observed sex ratio skew is already apparent for the smallest subadults in the 

central California aggregation (see Figure 4.10). However, there is no evidence of sex-

biased mortality on juvenile female white sharks, and the sex ratio of sharks captured in 

near shore fisheries is close to parity (see Section 4.1.1.3). 

 

2) White sharks, like other lamnids including salmon and mako sharks, have been shown to 

exhibit sexual segregation. Sexual segregation is reflected in sex ratios that deviate from 
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parity (are not 1:1). In nearly all places around the world where white sharks have been 

surveyed, the sex ratios of pups both in utero and in the environment are close to parity 

(see Sections 4.1.1.3), whereas the sex ratios in the observed juvenile, subadult and 

mature age classes are biased. Globally, female:male sex ratios  range from 1:2.4 on the 

U.S. east coast (Casey and Pratt 1985), 1:2 in New Zealand (C. Duffy pers. comm.), to 

1:0.2 in Australia (Bruce 1992). One recent study in South Africa showed a female:male 

sex ratio of 1:3 with both seasonal and spatial shifts in the sex ratios of juvenile and 

subadult white sharks over relatively small spatial scales (Robbins 2007). In the NEP, 

sexual segregation is apparent offshore with females using a larger, more dispersed area 

and most males occupying a more concentrated region in the offshore focal area 

(Jorgensen et al. 2010, Domeier and Nasby-Lucas 2012). 

3) Some females may not be observed at the studied aggregation sites, because they arrive 

later in the season after most photo-ID sampling effort has ceased. Due largely to weather 

patterns, the majority of sampling effort at both Guadalupe Island and at the central 

California sites has occurred opportunistically over a period of 2-4 months in the late 

summer and fall and sampling does not cover the entire period for which sharks are 

present. Based on work at Guadalupe Island the sex ratio shifts from 1:18.8 in August to 

1:0.9 in November (Nasby-Lucas and Domeier 2012) indicating that temporal patterns in 

sampling effort can impact the apparent sex ratio.  

4) It is possible that some females at the aggregation sites are simply not available to be 

sampled for behavioral reasons (a more detailed explanation for which is provided in 

(Sosa-Nishizaki et al. 2012)). White sharks show strong site fidelity and clear preferences 

for particular coastal sites (Jorgensen et al. 2010). Females may be less reliant on 

pinniped prey or have a reduced proclivity to spend time near the surface or approach 

dive cages.  

5) Mature females have a presumed 18 month gestation cycle and many do not return to the 

coastal aggregation sites each year. The mark recapture models used by the BRT 

estimated a lower capture probability for females and consequently adjusted for the 

overall lower capture probability for females (Section 4.4.2).  Nevertheless, the relatively 

short time series at central California could result in poor estimation of the capture 

probability for females and consequently underestimate abundance. 

 

Quantifying bias in sex ratios using SEDM:   
Given the concerns about sex ratio bias in studies at the two aggregation sites, the BRT used 

SEDM to evaluate the plausibility of a number of different sex ratio alternatives at each site.  For 

both study areas, the highest sex ratio considered was a 1:1 ratio and the lowest sex ratio was that 

estimated from the 3-year superpopulation estimates (2006-2008) at the two sites (0.6 at 

Guadalupe Island; 0.2 at the central California sites).  For central California, two other 

intermediate sex ratios were considered (female:male ratios of 0.6 and 0.8).  These two 

intermediate values were used because they were consistent with the ratios considered for 

Guadalupe Island and to provide intermediate values between the observed and 1:1 ratio.  For 

Guadalupe Island, one intermediate sex ratio was considered (female:male ratio of 0.8) which 

was intermediate between the observed and 1.1 ratio.  Prior to the SEDM voting, the BRT 

constructed and considered arguments for each sex ratio value, based on the best available 

information.  These arguments are given in Appendix G. 
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For the central California sites, the BRT allocated plausibility points across the following 4 sex 

ratio categories which represent different proportions of females in the population: 

 0.2: The observed proportion of female at the central California sites from 2006 - 2008 

 0.6: The observed proportion of female at Guadalupe Island from 2006 - 2008 

 0.8: The mid-point between 0.6 and 1 

 1.0: Representing the equal sex ratio observed in earlier age classes.  

 

For Guadalupe Island the BRT allocated plausibility points across the following 3 sex ratio 

categories which represent different proportions of females in the population:  

 

 0.6: The observed proportion of female at Guadalupe Island from 2006 - 2008 

 0.8: The mid-point between 0.6 and 1 

 1.0: Representing the equal sex ratio observed in earlier age classes.  

 

Based on the results of the SEDM assessment, the BRT concluded that the female:male sex 

ratios at both Guadalupe Island and in central California are most likely higher and that there are 

more females than suggested by photo-ID data and mark-recapture analyses (Table 4.7).  For 

Guadalupe Island, the BRT felt that the most plausible female:male sex ratio was 0.8 and for 

central California that the most plausible sex ratio was 0.6.  The main factor influencing the 

BRT's assessment was the timing of the sampling season at both sites relative to the late arrival 

of the females which would result in under sampling of females. In addition, the BRT noted that 

skewed sex ratios are common in white sharks around the world and therefore the skewed ratios 

observed at these sites were not surprising. The BRT, however, did express some concern that 

the difference in survival (i.e., individuals that return and are not lost due to emigration and 

mortality) between males and females could be linked to a higher mortality for females given the 

time they spend in near shore habitat overlapping with fisheries although gear vulnerability for 

such large sharks is likely lower than for smaller individuals. The observed sex ratios at the two 

sites also influenced the BRT's assessment as the sex ratios receiving the most plausibility points 

for the central California sites (0.6) was lower than that for Guadalupe Island (0.8).  

 
Table 4.7 SEDM voting results regarding the plausibility of different sex ratio (Female:Male) values for 

Guadalupe Island and the central California study sites. The average number of plausibility points and 

standard deviation across all BRT members are shown for each sex ratio value considered.  

 Guadalupe Island sex ratio 

values 

Central California sex ratio values 

 Sex ratio (F:M) 0.6 (obs) 0.8 1.0 0.2 (obs) 0.6 0.8 1.0 

Avg 33 48 20 4 43 36 18 

Stdev 18 20 10 4 15 14 9 

 

 

4.4.3.2. Abundance bias 

 

Background:  
In addition to there being a bias in the sex ratio, the BRT felt that there were additional factors 

which bias the estimate of white shark abundance in the NEP.  There are a number of reasons to 

believe that there are more adult female white sharks (and a larger overall population in the NEP) 

than have been estimated at the central California and Guadalupe Island aggregation sites.     
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1) The central California abundance estimate does not include white sharks at other local 

sites that are documented to be important white sharks hotspots, including Año Nuevo 

State Park. There is a long history of white shark activity at Año Nuevo, the site of the 

largest mainland breeding colony of northern elephant seals. Acoustic tagging studies in 

central California (Jorgensen et al. 2010) showed that some individuals exhibited site 

fidelity to particular coastal sites and did not move between sites over the course of the 

study which would impact their availability to be photographed at Southeast Farallon 

Island or Tomales Point. Such site fidelity (sometimes over small spatial scales) has been 

recorded in other areas across the species range including South Africa (Bonfil et al. 

2005); Australia (Bruce and Bradford 2012; 2013) and New Zealand (Duffy et al. 2012). 

Similarly, there are multiple sites around Guadalupe Island where white sharks are 

observed, but photo-ID studies only occurred at one of these sites.   

2) White sharks may occupy unknown or previously unoccupied areas. In the southern 

California Channel Islands and off central California there appears to be an increase in 

the occurrence of white sharks (see Section 4.3.3 and 4.3.4). The Channel Islands are 

home to a population of over 80,000 California sea lions and so the increasing occurrence 

of white sharks there would not be surprising. Other potential aggregation sites where 

pinnipeds are known to be common include the Coronados Islands and Cedros Island in 

Mexico. While not validated by scientists, fishers off Mexico have reported large white 

sharks at some of these islands (O. Sosa-Nishizaki, CICESE, pers. comm.). White sharks 

are also observed away from the main aggregation sites off Alaska, British Columbia, 

Canada, Washington, Oregon, California, Mexico, and into the Gulf of California 

(Klimley 1985, Martin 2004, Galván-Magaña et al. 2010). Some sharks tagged at the two 

known aggregation sites have been observed to visit other coastal areas (Jorgensen pers. 

comm., Domeier and Nasby-Lucas 2013, Nasby-Lucas, MCSI, pers. comm.) but the data 

are limited and information on the extent of coastal areas used by white sharks tagged at 

the Guadalupe Island and off central California is still unknown.   

3) Recent data using isotopes to characterize white shark diet across life history phases in 

the NEP suggested that not all white sharks make the transition to preying on marine 

mammals as adults and consequently those individuals may be less likely to be found 

near pinniped aggregations (Kim et al. 2012). A limitation of using isotopes for such 

studies, however, is the challenge of differentiating between signals associated with 

movement and diet.   

4) Based on catch, attack and stranding data, some white sharks do not appear to undergo an 

annual offshore migration (Ainley et al. 1985, Klimley 1985).  It is possible that the 

sharks that remain near the coast represent a different component of the population than 

those tagged at the aggregation sites. Very few satellite-tagged white sharks have 

remained along the coast.   

5) The high level of haplotypic diversity in the NEP white shark population suggests that the 

population is larger than indicated by the photo-based mark-recapture study. The 

alternate explanation for the high haplotypic diversity, that there was a dramatic (>90%) 

decline in the population over the last few generations, is not supported by the model 

results (Section 2.3, 4.1.4 and Appendix B).  
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Quantifying bias in female abundance estimates using SEDM: 
The BRT used SEDM to evaluate the potential bias in abundance estimates for mature female 

white sharks in the NEP. The BRT allocated plausibility points across four categories of possible 

bias in the estimates as follows: 

 There is no bias in the mark-recapture estimates (sex-ratio corrected abundance estimates 

should be multiplied by 1). This category indicates that essentially all white sharks in the 

NEP are available for sampling at the two study sites.  

 There are 20% more adult female white sharks in the NEP than the mark-recapture 

estimates indicate (abundance estimates should be multiplied by 1.2). This category 

indicates that just a few animals were not sampled at the aggregation sites and the current 

studies estimate the majority of adult female white sharks.   

 There are 2 times more adult female white sharks in the NEP than the mark-recapture 

estimates indicate (abundance estimates should be multiplied by 2).  This indicates that 

white sharks likely occur at other sites or areas in the NEP in addition to the two 

aggregation sites and that a substantial portion of the actual population has not been 

sampled because of their location or the timing and/or design of the sampling at the 

aggregation sites.   

 There are 10 times more adult female white sharks in the NEP than the mark-recapture 

estimates indicate (abundance estimates should be multiplied by 10). This category 

indicates that a large number of sharks have been missed by the current sampling studies 

and is consistent with the high level of population abundance suggested by the high 

haplotype diversity found in the sampled population (see Section 2.3, 4.1.4 and Appendix  

B). 

 

Based on the results of the SEDM evaluation, the BRT concluded that abundance of female 

white sharks in the NEP is most likely at least 2 times higher and possibly much larger (up to 10 

times larger) than that estimated by studies at the two aggregation sites.   There were several 

considerations that influenced the BRT’s evaluation and conclusion.  First, the BRT felt that 

there are likely areas where white sharks are found, but they have not been sampled (e.g. Año 

Nuevo Island and possibly others such as the Channel Islands or unsurveyed islands off Mexico).  

Second, the BRT felt it was plausible that some females never visit the aggregation sites.  

Finally, the BRT felt that the high level of haplotype diversity indicated the population 

abundance was much higher than suggested from the estimates at the aggregation sites.  A 

summary of the SEDM results for the assessment of abundance bias are in Table 4.8.  

 
Table 4.8 SEDM voting results regarding the bias in adult female abundance estimates based on the mark-

recapture studies. The BRT used SEDM to determine the plausibility of different levels of abundance bias; 1) 

the actual abundance is likely to be the same as estimated, 2) 20% greater than estimated, 3) two times 

greater than estimated, or 4) 10 times greater than estimated (values: 1, 1.2, 2, and 10). Shown below are the 

average number of plausibility points and standard deviation across all BRT members for each value.   

 Adult female abundance bias categories 

 1.0 1.2 2.0 10.0 

Avg 5 19 50 26 

Stdev 9 9 18 11 
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4.4.3.3. Estimate of weighted adult female white shark abundance scenarios 

 

Both the sex ratio and abundance bias assessments described in the preceding Sections (4.4.3.1 

and 4.4.3.2) were used by the BRT to develop abundance estimates for adult female white shark 

in the NEP and the associated uncertainty for each abundance estimate, as described below. 

These abundance values were used to formulate abundance scenarios for use in subsequent 

population modeling designed to assess population risk due to fishery bycatch impacts.   

 

The three SEDM assessments described in Sections 4.4.3.1 and 4.4.3.2 resulted in 48 

combinations of bias correction (4 sex ratio adjustments for central California* 3 sex ratio 

adjustment at Guadalupe Island* 4 adjustments based on the bias in abundance).  Adjusting the 

estimated number of mature females at Guadalupe Island and central California for these bias 

combinations yielded 48 abundance estimates in addition to the direct empirical estimate of 47 

adult females (Section 4.4.2.3). For example, one of the 48 abundance estimates with a sex ratio 

bias of 0.8 at Guadalupe Island and 0.6 at central California and an abundance bias of 2 has an 

associated abundance estimate of ((27 females/0.8 sex ratio) + (20 females/0.6 sex ratio))*2=134 

adult females. The same approach was taken to compute each of the 48 abundance estimates 

using the various combinations of bias assessed in the BRTs SEDM.  The relative plausibility of 

each of the 48 possible abundance estimates was calculated by multiplying the plausibility points 

from each of the three bias estimates.   The weights were rescaled so that all 48 weights summed 

to 1. 

 

For further modeling analyses, the 48 alternative abundance values were binned into the 

following four categories: 60 to125, 125 to 200, 200 to 400 and 400 to 1600 (1600 was the 

maximum abundance calculated using the approach above).  In addition to these abundance 

categories, the estimate of 47 adult females from the mark recapture analysis (see Section 

4.4.2.3) was used as a lower population bound in the modeling. The sum of rescaled weights for 

each abundance estimate within each category as described above yielded a total weight for each 

abundance category (Table 4.9). This summed weight reflected the BRTs initial belief about 

which abundance category most likely included the actual adult female abundance level for the 

NEP. Based on this initial analysis, the BRT concluded that the adult female abundance in the 

NEP was most likely greater than 200 individuals (67% of plausibility points in the 200-400 and 

>400 adult female categories), although lower populations were possible (34% of plausibility 

points in the < 200 adult female categories). The BRT re-evaluated abundance bias after initial 

modeling was completed as discussed below in Section 4.5.2.3.  

 
Table 4.9 SEDM weights associated with the adult female abundance (Nf) categories after the first SEDM 

point allocation on abundance bias. 

Abundance category Summed SEDM 

weight 

Nf < 125 0.13 

125 ≤ Nf < 200  0.21 

200 ≤ Nf < 400 0.41 

Nf  > 400 0.26 

 

Following the initial SEDM point allocation on the bias in sex ratio and abundance, the BRT 

conducted a PVA analyses that quantified the impact of fisheries mortality (YOY and juveniles) 
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on population growth rates (Section 4.5). These analyses provided information about the 

feasibility of the 5 abundance categories and associated bias considered in the BRT’s initial 

SEDM assessment.  Based on the results of the PVA analyses, fisheries mortality rates for YOYs 

under abundance scenarios based on the levels of abundance bias (i.e. 1.0 and 1.2) were 

estimated to be on the order ~70 and 40%, respectively.  Because mortality rates of 20% are 

considered high for gillnet fisheries (see Appendix I), the BRT felt it was highly unlikely that 6 

vessels operating in the Sebastián Vizcaíno Bay area (which are responsible for the large 

majority of documented YOY catches in the NEP, O. Sosa-Nishizaki, CICESE, pers. comm.) 

could account for this high a level of fisheries mortality. These vessels operate in only a portion 

of the white shark nursery habitat in the NEP, and catch rates are highest at the same time of year 

in both Sebastián Vizcaíno Bay and the southern California Bight indicating the YOY are spread 

throughout this area. In light of these considerations, the BRT conducted a second SEDM to 

reallocate plausibility points associated with the abundance bias. Based on this second SEDM 

(Table 4.10) the BRT shifted its assessment of bias to higher population levels with over 90% of 

the plausibility points in the two highest bias levels (2 and 10). The BRT felt the lower bias level 

and associated population levels were simply not realistic based on the associated fisheries 

mortality rates. These new abundance bias estimates were used to calculate new abundance 

scenario weights as previously described which were then used in subsequent PVA analyses as 

described in Section 4.5.  
 

Table 4.10 Results from the second SEDM voting exercise regarding the bias in adult female abundance 

estimates based on the mark-recapture studies. This SEDM point allocation was taken after the initial PVA 

analysis. 

 Adult female abundance bias categories 

  1 1.2 2 10 
Avg 1.3 8.1 40.6 50.0 

Stdev 3.5 10.0 21.5 26.2 

 

The results of the BRT’s second SEDM on abundance bias changed the relative weights of the 

48 abundance scenarios and abundance categories (Table 4.11). Based on this reanalysis, the 

BRT concluded there was an even greater likelihood (83%) that the population of mature adult 

female white sharks in the NEP was larger the 200 individuals with only 16% supporting the two 

lower abundance levels (less than 200 adult females). In addition to the sources of bias related to 

females not being available for the photo-ID studies at the two study sites and the haplotypic 

diversity in the NEP population, the BRT concluded from the PVA model results that the lower 

population levels were not plausible or realistic in light of the estimated levels of fishery related 

mortality. Although there remains some uncertainty in the overall level of fisheries bycatch, the 

BRT felt that is was unlikely that 6 vessels operating in a small portion of the nursery habitat 

could remove more than 20% of the YOY white sharks in a given year. 
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Table 4.11 SEDM weights associated with the adult female abundance (Nf) categories after the second SEDM 

point allocation on abundance bias.   

Abundance category Summed SEDM 

weight 

Nf < 125 0.05  

125 ≤ Nf < 200  0.11  

200 ≤ Nf < 400 0.33  

Nf  > 400 0.50  

 

 

4.4.4. Estimate of adult female mortality due to fishing  

 

Based on the threats evaluation, the BRT expressed the greatest concern regarding the threat of 

fisheries mortality (see Section 4.2 and Table 4.5) and consequently attempted to quantify and 

evaluate the risk posed by this mortality in the modeling efforts. YOY and juvenile fisheries 

mortality rates were informed using the bycatch data from the U.S. and Mexico (Section 4.1.1). 

Adult female mortality, for which there are few data, was informed using the SEDM approach. 

The BRT considered the plausibility of various levels of mortality associated with the potential 

for adult female white sharks to be entangled in near-shore fishing gear or caught on the high-

seas by IUU fishing vessels. Arguments for each mortality level can be found in Appendix H.  

 
Table 4.12 SEDM voting results regarding the potential number of adult female white sharks killed annually. 

Shown below are the average number of plausibility points and standard deviation across all BRT members 

for each value. 

 Number of adult females killed annually 

  0 1 2 5 10 

Avg 9 24 34 25 7 

Stdev 10 16 13 16 5 

 

The BRT concluded that the adult mortality was likely around 2 adult females annually with 

83% of the plausibility points spread between an adult mortality of 1 and 5 females per year 

(Table 4.12). These values are higher than those indicated by the available catch data (see 

Section 4.1.1). This reflects the BRT’s concern that more adult white sharks could be entangled 

in gear or caught on the high seas than are seen or reported. Obtaining direct data on fisheries 

mortality from remote camps (such as in Mexico), on the high seas and/or with limited fisheries 

observer coverage is challenging. Also, sharks that may become entangled but swim away to die 

later are difficult to observe, especially given that white sharks sink when dead.  

 

4.5. Assessment of population abundance and fisheries risk assessment: 

 

General introduction:  

The BRT conducted a population assessment to assess the probability that fisheries mortality 

could lead to future population decline, especially to levels below certain thresholds within 

relevant time periods. A summary of the analysis is provided below. A more detailed description 

is provided in section 4.5.1.  
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Analysis summary: 

Estimates of potential population productivity (intrinsic rate of increase) are fundamental to 

modeling how threats might impact population growth; populations with higher potential 

productivity can sustain higher levels of mortality. Annual rates of population growth are 

represented by λ, where λ > 1 means a population is increasing and conversely λ < 1 means a 

population is decreasing. λ can be calculated using information on age-specific reproduction and 

survival (vital rates) if the relative proportion of the population in different age classes is stable. 

If the vital rate estimates come from a population under optimal conditions for survival and 

reproduction and resources are not limiting then intrinsic or maximum potential growth rate 

(λmax) can be calculated (Caughley 1977). Smith et al. (1998) referred to this as rebound potential 

for sharks. 

 

To calculate λmax for white sharks, the BRT needed estimates for annual reproduction (how many 

female pups are produced) and survival rates. For reproduction, the BRT used the values in 

Table 2.1.  The estimate of annual pup production is 2 female pups per year (8.9 pups/ 2.2 year 

cycle * 0.5 assuming 1:1 sex ratio at birth). For survival the BRT used a number of age-class-

specific survival rates, assuming the survival rate generally increases through life (i.e., survival 

of YOY < juvenile < subadults and adults). The values for vital rates and the associated error 

distributions were used as inputs for statistical models to calculate a mean and error distribution 

for λmax. It is important to note that this distribution of λmax only includes natural mortality and 

not anthropogenic mortality.  

 

Given that the BRT considered fisheries mortality to be a moderately important threat to white 

sharks, it was necessary to incorporate fisheries related mortality into the analyses. This was 

accomplished in a number of different stages.  

 YOY and age-1 white shark mortality data were combined with information on 

reproduction to calculate what percentage of YOY and age-1 white sharks in the 

population would be caught under each abundance scenario. For example, for YOY the 

question was, “Of all the pups produced under the different adult female abundance 

scenarios, what proportion of these would be killed by fisheries given the current levels 

of bycatch?” One notable result was that recent estimates of annual YOY bycatch are 

approximately equal to the total annual pup production that would be expected from 47 

adult females (the direct empirical estimate of adult female abundance). In addition, 

under this scenario, bycatch mortality for age-1 white sharks would exceed a 100% 

mortality rate.  This is obviously an unrealistic result and suggests that adult female 

abundance must be substantially higher than the photo-ID estimates if the available 

bycatch estimates are accurate.  This lowest-abundance scenario was consequently 

excluded from further analyses.  

 The YOY and age-1 mortality rates calculated through the above analyses (number 

caught/number produced) were used to discount the potential rates of population growth 

(λmax) to account for the fisheries mortality.  

 The population growth rates were similarly discounted for adult female mortality. 

Because the BRT did not have actual data on adult catch, the SEDM process was used to 

define plausible alternatives of adult female bycatch; these included 0, 1, 2, 5, and 10 

adult females killed per year.  The combination of these adult-mortality scenarios and the 
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four retained scenarios of adult female abundance (the value of 47 was not included) 

resulted in 20 models that were evaluated.  

 The potential population growth rates discounted to account for the bycatch mortality of 

adult, YOY and age-1 white sharks (termed λmax*) were used to project the population 

into the future for each of the 20 potential scenarios. Population projections incorporated 

stochastic variation in growth rates (e.g., due to variable environmental conditions), 

density-dependence, and uncertainty in all population growth parameters (see details in 

Section 4.5.1.1). 

 These population projections were used to calculate the probability that the NEP white 

shark population would decline to various population thresholds over certain time periods 

as defined below; these thresholds corresponded to four categories of extinction risk 

defined by the BRT: high, medium, low and very low (see Section 4.5.2.3). 

 

4.5.1. Information inputs for population assessment 

 

The assessment was based on estimates of: 1) maximum potential productivity (i.e., the intrinsic 

population growth rate, estimated using life history parameters from Table 2.1), 2) current adult 

female abundance (see Section 4.4.3), and 3) current levels of fisheries bycatch mortality for 

YOY, juveniles and adults (Section 4.1.1and 4.4.4).  

 

4.5.1.1. Maximum potential population productivity 

 

Given estimates of demographic vital rates (i.e., survival and reproduction) for a population, it is 

possible to construct a life table, i.e., the schedule of survival and reproduction through life.  

Conventional methods, such as solving for the characteristic Euler equation or conducting 

eigenanalysis of a Leslie or Lefkovitch matrix, may then be used to estimate the corresponding 

annual rate of population growth (λ)  for a population with stable age distribution . If the vital 

rate estimates come from a population under optimal conditions for survival and reproduction, 

then one may estimate the maximum potential rate of sustained population growth (λmax), which 

is the rate that may be achieved as long as resources are not limiting.  Smith et al. (1998) referred 

to this as the rebound potential for sharks (i.e., a measure of the ability to recover following a 

population decline).  These parameters are fundamental to estimating how threats might impact 

population growth. 

 

Vital rate inputs: 

Little information about adult survival rate was available.  The BRT's analysis of photo-ID data 

for adults and subadults at GI provided estimates of mean annual apparent survival for females 

(0.90  .11) and for males (0.95  0.06) (Section 4.4.2).  However, these estimates have low 

precision and do not distinguish between true mortality and permanent emigration (i.e., if there is 

some permanent emigration from the study area, then true survival is higher than these 

estimates).  Uncertainty in adult female survival (Sadult) was therefore expressed using a uniform 

distribution with minimum and maximum values representing the range of rates considered 

feasible by the BRT.  A minimum value of 0.89 was used because lower adult survival rates 

were compatible with reasonably positive population growth (e.g., λmax > 1.01) only when 

unrealistically high juvenile survival rates (e.g., mean Sjuv ≈ Sadult) were allowed.  Also, the photo 

ID-based estimate of female apparent survival (0.90) is considered to be an approximate 
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minimum estimate of true adult survival because it reflects some level of emigration, some 

human-caused mortality, and possibly some density-dependent reduction in survival from the 

intrinsic rate.  A maximum value of 0.96 was used because it coincides approximately with 

upper adult survival estimates for other long-lived vertebrates such as albatrosses (Dillingham 

and Fletcher 2011) and some marine and terrestrial turtles (Heppell 1998). No explicit  

assumptions about white shark longevity were made in the analysis (i.e., models used by the 

BRT did not include longevity parameters), but higher mean adult survival rates (e.g., Sadult ≥ 

0.98 for some cetaceans) would indicate longevity patterns similar to humans, whose lifespans 

are likely longer than white sharks’ (Anderson et al., 2010).  This was the rationale for not 

considering higher adult mean survival rates. 

 

No information was available about YOY or mean juvenile survival rates.  It was assumed that 

survival rates would generally increase through life so that Syoy < Sjuv < Ssubadult = Sadult , where 

Sjuv, Ssubadult and Sadult represent the geometric mean of age-specific values within the age class 

Therefore, Sjuv and Syoy were calculated as: Sjuv = cjuvSadult and Syoy = cyoySjuv, where cjuv and cyoy 

are constants between 0 and 1. The juvenile stage was assumed to last for 5 years, so that animals 

become subadults (i.e., achieve adult survival rates) upon reaching their 6th birthday.  

Uncertainty in these parameters was expressed through use of probability distributions 

representing the full range of what the BRT considered to be plausible values (Table 4.13).  

 
Table 4.13  Average white shark vital rates and distributions for calculating a distribution for the maximum 

potential rate of population growth λmax 

Vital rate Estimate or distribution Information sourcea 

Age at first reproduction, α Uniform(12, 15) 1 

Litter size Normal(8.9, σ = 0.75) 2  

Sex ratio at birth 1:1, fixed 3 

Inter-birth interval 2.2 years, fixed 4 

Adult and subadult survival, 

Ssubadult = Sadult 

Uniform(0.89, 0.96) See text 

cjuv* Uniform(0.85, 0.95)  

Juvenile survival Sjuv = Sadultcjuv  

cyoy* Uniform(0.5, 0.99)  

YOY survival Syoy = Sjuvcyoy  
a Information sources: (1) based on von Bertalanffy growth curve from Cailliet et al. (1985) given female maturation 

size between 4.5 and 5 m; (2) from Mollet et al. (2000): mean = 8.9, range = 4 – 14 from 11 individuals; the 

specified distribution approximates these data if range assumed to represent a 99% CI; (3) Francis 1996; (4) Nasby-

Lucas and Domeier (2012).  

* Sjuv and Syoy were calculated as: Sjuv = cjuvSadult and Syoy = cyoySjuv, where cjuv and cyoy are constants between 0 and 

1. Survival rates represent the geometric mean for each age class. 

  

 

Conventional approach for estimating λmax: 

Using a Monte Carlo randomization approach, a distribution for λmax is constructed by randomly 

drawing values (thousands of times) from the distributions of vital rates (Table 4.13) and 

numerically solving λmax for each combination of draws using a version of the Euler equation 

that does not specify a maximum age (ignores senescence) but assumes a constant annual 

survival and reproductive rate upon reaching maturity (Skalski et al. 2008):  
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0 = λmax
α – 1(Sadult – λmax) + lαF    (1) 

 

where lα is the probability of surviving to reproductive age (α) (lα =SyoySjuv
5Ssubadult

α-6; assuming 

that the juvenile stage lasts for 5 years and animals become subadults at 6 years of age), and F is 

fecundity in terms of the average number of female pups born per female per year (equal to litter 

size × 1/inter-birth interval × the proportion of pups that are female). 

 

Integration of life history theory to improve vital rate and λmax estimates: 

For bird species across a wide range of taxa, body sizes and life histories, Niel and Lebreton 

(2005) showed that the product of log(λmax) and generation time (T) is a demographic invariant, 

i.e., (λmax)T = a ≈ 1.  It followed in their study that λmax could be calculated solely from estimates 

of adult survival (Sadult) and age at reproductive maturity (α) (and the estimate of the allometric 

constant a), by numerically solving the following equation for λmax: 

    

λmax = exp{ a · [α + Sadult/( λmax – Sadult)]
-1 }.  (2) 

 

Analysis by Dillingham et al. (in prep) suggests that for sharks, the product of log(λmax)T may be 

more variable across species such that for a given species k, ak may be assumed to come from a 

normal or lognormal distribution with mean a and variance σa
2, where a is the expected 

log(λmax)T and σa describes inter-species process variation in the ak.  Based on meta-analysis of 

shark life history estimates published by Cortes (2002),  Dillingham et al. (in prep) have obtained 

preliminary estimates for sharks of a ≈ 1 and σa = 0.4 (with CV on σa = 0.35).  This information 

can be used as an informative Bayesian prior to refine the vital rates estimated from the 

conventional methods described above.  Put simply, combinations of vital rates that result in 

log(λmax)T being further from a are considered less plausible than those close to a.  Implausible 

combinations of vital rates are rejected from the set of Monte Carlo samples.  This shrinks the 

distribution of λmax from the estimates obtained from equation 1 toward estimates obtained from 

equation 2, increasing the precision of the distribution for λmax (Figure 4.12).  The amount of 

shrinkage depends on the precision of estimates from equation 1 (the more data-informed the 

estimate for species k, the less it will shrink toward a theoretical estimate) and on the value of σa 

(more shrinkage when σa is small). Based on the shrinkage estimator, the posterior distribution 

for λmax for white sharks has a mean of 1.050, SD = 0.017, and 95% credible interval (CRI) of 

1.021 – 1.090.  

 

Advantages of using estimates from this integrated matrix-allometric approach are twofold.  

Conceptually, integrating life history theory into the analysis should result in better informed 

estimates, particularly in cases where important empirical information from the population of 

interest is missing.  Analytically, this approach reduces the sensitivity of estimates to how 

uncertainty in the species’ life history is specified.  An example illustrating this is provided in 

Appendix J.  

 



 

 88 

 
Figure 4.12  Distributions for λmax calculated from vital rate distributions in Table 4.13 using the conventional 

life table approach (equation 1); expected values using life-history theory (equation 2, with a fixed at 1); and 

Bayesian shrinkage estimates. 

 

4.5.1.2. Female abundance 

  

Adult female abundance:  
The BRT conducted the population assessment under five scenarios of plausible adult female abundance 

abundance levels as discussed in Section 4.4.3.3 of this report. These adult abundance scenarios were: 47 

were: 47 females (lower bound estimate); 60- 125 females; 125 to 200 females; 200 to 400 females; and 400 -

females; and 400 -1600 females.  Associated abundance distributions are shown in  

Figure 4.13.  

  

life table estimates (λmax > 1) 

 
expected theoretical estimates 

 
shrinkage estimates 
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Figure 4.13  Distributions for adult female abundance, under five scenarios.  The first (lowest) estimate 

corresponds to the combined estimates for Guadalupe Island and central California (super-population 

estimate for 2006 – 2008), based on analysis of photo-ID data and information in those datasets about the 

proportion of individuals that are mature females (as well as uncertainty in this proportion, described by beta 

distributions).  For the other four scenarios, abundance is uniformly distributed with lower and upper 

bounds defined as per discussion in Section 4.4.3.3 of this report.  Vertical lines represent the distribution 

mean (solid red lines) and 95% CIs (dotted red lines). 

 

Female abundance across all age classes:  

Using vital rate parameters it is possible to estimate the total female abundance (across all life 

history phases) associated with each of the abundance categories seen in Figure 4.13. 

Approximations of total female abundance were derived from adult female abundance estimates 

by assuming the population is stationary (not increasing or decreasing, and with stable age 

distribution) and constructing basic life tables based on survival estimates used in the Monte 

Carlo simulations.  For example, the number of female YOYs for simulation i is estimated from 

the product of adult abundance, Nadult, i and the annual reproductive rate (divided by 2, assuming 

1:1 sex ratio at birth).  The number of 1-year old females, N1, i is then Nyoy, i * Syoy, i (where S is 

the survival rate).  The number of 2-year olds is N1, i * Sjuv, i, and so on.  Total abundance (both 

sexes) is estimated by multiplying the female abundance estimate by 2, assuming 1:1 sex 

ratio.  Because true sex ratio is unknown and because the population is not known to be 

stationary, this estimation method could be biased, but in the absence of better information it 

serves as an approximation of the total population size relative to abundance of sampled age 

classes. 
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Figure 4.14 Abundance distributions for all females across age classes calculated using the abundance 

scenarios in Figure 4.13. Vertical lines represent the distribution mean (solid red lines) and 95% CIs (dotted 

red lines). 

 
 

Table 4.14 Estimates of the abundance of all white sharks across age classes including only females and both 

males and females together. Calculations were made using the estimate of 47 mature females and the mean of 

the 4 abundance scenarios seen in Figure 4.14. The ratio of total females to adult females is also shown for 

each abundance scenario.  

 

Adult 

females 

Total 

females 

Total:Adult 

ratio 

Total, both sexes (assuming 

parity) 

47 151 3.2 302 

93 542 5.8 1084 

162 1247 7.7 2494 

300 2634 8.8 5268 

1002 9662 9.6 19324 

 

The Total:Adult ratio changes because of the impact of bycatch of YOYs on the overall age 

structure.  At low numbers of adult females most YOYs are caught and hence the proportion of 

immature is low and the Total:Adult ratio is lower than when adult female numbers are higher. 

For the higher abundance scenarios considered most plausible by the BRT (e.g., > 200 adult 

females), the total population abundance of NEP white sharks (both sexes) is likely to be > 3000 

based on these calculations. 

 

4.5.1.3. Current levels of bycatch mortality 

 

The BRT used the population assessment to examine the influence of fisheries bycatch on the 

population under each of the scenarios for adult female abundance.   

 

As described in Section 4.1.1 of this report, contemporary estimates of annual bycatch mortality 

(total individuals killed) for YOY white sharks is 159 and for juveniles between age 1 and 2 is 

46.  These estimates are based on the following: records of 186 and 6 individuals caught along 
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the Pacific coast of northern and southern Baja California, respectively (100% mortality rate, 

77% of animals smaller than 175 cm or YOY) and about 25 individuals caught in southern 

California net fisheries (49% mortality rate, 88% smaller than 175 cm) (Section 4.1.1). Fifty 

percent are assumed to be female based on the bycatch data (Section 4.1.1.3).  Note, these are 

probably minimum bycatch estimates, since not all catches (particularly in Mexico) are likely 

accounted for in the available reports.  For example, catches of juveniles are known to occur in 

the Gulf of California (Galván-Magaña et al. 2010) and in fishing communities along the Pacific 

coast of southern Baja California (H. Peckham, Groupo Tortuga, pers. comm.), but annual 

estimates do not exist for these regions.   

 

The five scenarios of adult female bycatch considered were: 0, 1, 2, 5, or 10 animals killed per 

year, based on the discussion in Section 4.4.4 and Appendix H.  

 

 

4.5.2. Assessment of the impact of fisheries catch on the NEP population’s extinction 

risk  

 

The BRT assessed how the different levels of fisheries mortality on YOY, juvenile, and adult 

female life stages may impact the NEP population, using information on the population’s 

maximum potential growth rates (λmax) and the five different categories of adult female 

abundance. The impact assessment was conducted in stages, using a stochastic age-structured 

density-dependent growth model (i.e., a model that factors in a population’s size and carrying 

capacity, along with natural variability in both the population’s vital rates and environmental 

conditions).  First, estimates of YOY and age-1 bycatch mortality, combined with information 

about reproductive rates, were used to calculate anthropogenic YOY and age-1 mortality rates 

(proportion of animals killed annually) under each scenario of adult female abundance. These 

YOY/juvenile bycatch mortality rates were used to calculate the maximum potential population 

growth rate possible given the reduced Syoy and S1 (survival from age 1 to 2); this rate is termed 

λmax*.  The probability that λ max* would be less than one (corresponding to sustained exponential 

decline) was also calculated.  Second, estimates of adult female bycatch and corresponding adult 

mortality rates were included and λmax* metrics were re-calculated.  Finally, the distributions for 

λ max* combined with plausible specifications of stochastic variation in λ and uncertainty in 

density-dependent population growth parameters were used to simulate populations projections. 

These were used to calculate the probability that the NEP white shark population would decline 

to various population thresholds based on risk categories decided on by the BRT (Section 

4.5.2.3).  

 

4.5.2.1. Impact of bycatch and mortality rates for YOYs and 1-year olds 

 

The bycatch mortality rate for YOYs (Myoy,b) may be calculated as Myoy,b = Cyoy/Nyoy, where Cyoy 

is the number of lethal catches and Nyoy is the number pups born in a year, which is simply the 

product of the adult female abundance and fecundity.  Similarly, the bycatch mortality rate for 1-

year olds is M1,b = C1/N1, where N1 = NyoySyoy(1 – Myoy,b). 

 
The distribution for λ max* can be calculated from the distributions for λmax, Myoy,b and M1,b.  For each Monte 

each Monte Carlo combination of vital rates that was retained (not rejected) by the algorithm for estimating 

estimating λmax (see section above on estimating maximum potential population productivity), lα is replaced 



 

 92 

with lα(1−Myoy,b)(1 – M1,b) and the Euler method (equation 1) is used to calculate λmax*. Estimates of YOY 

catch rate (proportion of YOYs captured annually, including retained and released animals), Myoy,b and M1,b 

under the different scenarios of adult female abundance are shown in  

Figure 4.13.  One notable result is that if the total adult female abundance were equal to the 

photo-ID based estimates (i.e., 47), then present-day estimates of annual YOY bycatch are 

approximately equal to the total annual pup production (Figure 4.15 upper leftmost panel).  

Moreover, under this adult female abundance scenario, bycatch mortality for 1-year olds would 

be 100% (Figure 4.15, bottom left-most panel).  This is an unrealistic result and suggests that 

adult female abundance must be substantially higher than the photo-ID estimates in order to 

support the level of pup production indicated by catch data.  This adult female abundance 

scenario is therefore not considered further in the BRT’s analyses and is not presented in 

subsequent result summaries. Under the remaining four adult female abundance scenarios, the 

mean estimated YOY bycatch rates ranged from 5 to 48% (Figure 4.15, top panel) and the mean 

estimated YOY mortality rates ranged from 5 to 45% (Figure 4.15, middle panel). The mean 

mortality rates for 1-year olds ranged from 2 to 41% (Figure 4.15, bottom panel).
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Adult female abundance (N) scenarios 

 

 

 

 
Figure 4.15 Distributions for estimated YOY catch rates (the proportion of the YOY population captured 

each year; top panel), the corresponding YOY mortality rates (the proportion of the YOY population that are 

captured and killed each year; middle panel), and the  mortality of 1-year olds (the proportion of the juvenile 

(1-year old) population that is captured and killed each year; bottom panel) under 5 scenarios for the number 

of adult females (N) in the population (noted across the top).  The mean catch rates (CR) and mortality rates 

(M) and standard error (SE) for each distribution are noted at the top of each plot. Vertical red lines 

represent the distribution mean (solid lines) and 95% CIs (dotted lines). 

 

The BRT assessed the impact of YOY and juvenile bycatch estimates on the potential population 

growth rate (Figure 4.16).  For the lowest plausible abundance scenario (N ≈ 60 – 125 adult 

females), the mean estimate for λmax* is 1.00 and the probability of negative population growth 

N ≈ 60 - 125 

 
N ≈ 125 - 200 

 
N ≈ 200 - 400 

 

N ≈  400 − 1600 

 
N ≈  50 
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(P) is 0.52.  For the three higher abundance scenarios, the probability of YOY and juvenile 

bycatch mortality forcing sustained deterministic population decline is small (P = 0.043, if N ≈ 

125 – 200 adult females) or negligible (P ≈ 0 for scenarios of N > 200 adult females). 

 

 

 
Figure 4.16  Distributions for λmax*, the maximum population growth rate that could be achieved, under four 

adult female abundance scenarios (excluding the lowest adult female abundance scenario), given reduced 

survival of YOYs and 1-year olds due to current bycatch levels in southern California and Mexico. Mean 

estimates of λmax* , the standard error (SE), and the probability of negative population growth (P) are given 

above each plot. Vertical red lines represent the distribution mean (solid lines) and 95% CIs (dotted lines). 

 

4.5.2.2. Combined impacts of YOY, juvenile and adult bycatch mortality rates 

 

The bycatch mortality rate for adult females, Madult,b, may be calculated as Cadult/Nadult, where 

Cadult is the number of lethal catches of adult females and Nadult is the number of adult females 

under the different abundance scenarios.  Following methods of the previous section, lα for each 

retained Monte Carlo sample is replaced with lα(1−Myoy,b)(1 – M1,b), Sadult is replaced by Sadult(1 

– Madult,b), and the Euler method (equation 1) is used to calculate the new λmax*.   

The BRT then analyzed the additional impact (in addition to the estimated YOY and juvenile 

mortality rates discussed above) of capturing and killing 1, 2, 5, or 10 adult females per year on 

the population’s maximum growth rate (λmax*) (Figure 4.17).  For the lowest plausible abundance 

scenario (N ≈ 60 – 125 adult females), all considered levels of adult female mortality resulted in 

a high probability of causing population decline (P ranged from 0.61 to 0.95; Figure 4.17, top 

row).  For the low-intermediate abundance scenario (N ≈ 125 – 200 adult females; Figure 4.17, 

second row), catching one or two adult females annually resulted in a small but non-trivial 

probability of population decline (P = 0.06 or 0.08, respectively), but catching 5 or 10 adult 

females per year results in a substantial probability of population decline (P = 0.19 or 0.43, 

respectively).  For the two highest abundance scenarios (N ≈ 200 – 400 adult females, or 400 – 

1600 adult females; Figure 4.17, bottom two rows), the probability of population decline was 

generally low for all considered levels of adult female mortality (P ≈ 0 to P = 0.05). 

 

 

N ≈  60 - 125 

 
N ≈ 125 - 200 

 

N ≈ 200 - 400 

 

N ≈ 400 − 1600 

 



 

 95 

 
Figure 4.17 Distributions for λmax*,  the maximum population growth rate that could be achieved, under four 

adult female abundance (N) scenarios (noted along the left margin) and four scenarios of adult female catch 

and mortality (Cadult. noted along the top margin) of 1, 2, 5, or 10 adult females per year. Adult female catch 

and mortality was considered in addition to the estimated YOY and juvenile mortality rates (see Figure 4.15) 

Mean estimates of λmax*, the standard error (SE), and the probability of negative population growth (P) are 

given above each plot. Vertical red lines represent the distribution mean(solid lines)  and 95% CIs (dotted 

lines). 

 

4.5.2.3. Probability of declining below defined population thresholds  

 

For each Monte Carlo sample i of a particular abundance and bycatch scenario, the NEP white 

shark population's trajectory was projected over specified time frames. The model projected 

population trajectories under different scenarios of present-day adult female abundance and 

bycatch mortality levels, as described in the sections above.  The BRT then considered these 

modeled population projections to evaluate the threat of fisheries bycatch and its contribution to 

the population’s risk of extinction. 

 

Population trajectories were projected according to the following stochastic density-dependent 

model: 

 

Nt+1 = Ntλt 

 λt = {λmax exp[-log(λmax)(Nt/K)θ] – Δλbyc} exp(εt) 
where Nt is the adult female abundance in year t, K (carrying capacity) and θ are theta-logistic growth model 

parameters, Δλbyc is the difference between λmax and λmax*, and εt ~ Normal(0, σ = 0.10) describes annual 

Cadult = 1 Cadult = 2 Cadult = 5 Cadult = 10 

N ≈  

60 - 125 

 

N ≈  

125 - 200 

 

N ≈  

200 - 400 

 

N ≈  

400 − 

1600 
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stochastic variation in λt.  The choice for σ was based on several empirical examples (see next paragraph).  

Parameter K is unknown and was therefore calculated for each population trajectory i as N0/κ, where N0 is 

the abundance estimate at time zero (from distributions in  

Figure 4.13) and κ ~ Uniform (0.1, 0.9), implying that present-day abundance could be anywhere 

between 10% and 90% of what the environment can currently support.  Parameter θ determines 

the shape of the density-dependent response and is also unknown.  When θ = 1, the model 

describes simple logistic growth.  For large values of θ, the population is capable of high growth 

rates (i.e., close to λmax) until abundance gets fairly close to its carrying capacity.  For long-lived 

late-maturing species, it is generally believed that θ > 1 (e.g., Fowler 1988).  Uncertainty was 

therefore expressed as θ ~ Uniform (1, 10).  The upper bound corresponds to net population 

production being maximized at around N = 0.8K (rather than at 0.5K for the simple logistic 

model). 

 

The choice for σ was based on data from Guadalupe Island white sharks and empirical examples 

from other species.  Based on the photo-ID data at Guadalupe Island, variation in tt NN ˆ/ˆ
1  for 

adult female white sharks from 2001 – 2011 (see Section 4.4.2.3) corresponded to σ ≈ 0.15, but 

this should overestimate the true σ because variance in the annual abundance estimates reflects 

sampling error and an unknown level of annual emigration and immigration from the study area.  

Estimates of variation in t̂  for several vertebrate populations with similar generation times (e.g., 

15 – 30 years) are also around 0.1 – 0.2 (Regan et al. 2009), but these also probably overestimate 

variation for the adult class due to sampling error in the underlying abundance estimates and 

because those t̂  are based on population abundance estimates across all age classes (e.g., 

variation in abundance for gray whales age ≥ 1) or just the youngest age classes (e.g., variation in 

pinniped pup counts, sea turtle nest counts).  Variation in these groups is relatively volatile (due 

to highly variable reproductive or juvenile survival rates) compared to what would be expected 

for the adult age class. 

 

Defining risk categories: 

The BRT chose four categories for overall levels of risk of extinction: high, medium, low and 

very low. The specific criteria were based on current estimated abundance, population 

trajectories over specific time horizons and the probability that the population is declining. For 

population trajectories, the BRT used different time horizons that were based on the white shark 

generation time (~20 years), 3 and 5 generation times were used for different levels of risk and 2 

generation times (40 years) used to delineate “foreseeable future”. For abundance levels in the 

risk categories, the BRT used two numbers, “near extinction” and “dangerously small”. These 

reference points are defined below. 

 

The two higher risk categories have elements that correspond to risks faced by a declining 

population and risks faced by small populations.  We chose to have both these elements in our 

higher risk definitions. This is similar to a memorandum developed by the FWS in response to a 

request by the Court to provide additional explanation for the legal basis of the FWS’s 

determination that polar bears be listed as threatened (TH) rather than endangered (EN).  The 

memorandum reviews previous decisions and lists 4 categories that cover species listed as 

endangered.  The two that relate to this white shark petition are:   
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 Species formerly more widespread that have been reduced to such critically low numbers 

or restricted ranges that they are at a high risk of extinction due to threats that would not 

otherwise imperil the species. 

 Species with still relatively widespread distribution that have nevertheless suffered 

ongoing major reductions in its numbers, range, or both, as a result of factors that have 

not been abated. 

 

We considered what timeframes and abundance levels were appropriate to the white shark case 

below. 

 

“Foreseeable future” is considered to be the timeframe over which predictions about the future in 

making determinations about the future conservation status of the species can be reasonably 

relied upon (M-37021 2009 DOI memorandum).  In quantifying the foreseeable future the BRT 

should consider the life history, habitat characteristics, availability of data, kinds of threats, 

ability to predict threats, and the reliability of models used to forecast threats.  There are several 

factors to consider for white sharks when seeking timeframes meaningful for risk assessment: 1) 

the only threat considered by the Team to have moderate risk is the threat category 

“Overutilization: commercial, recreational or education”,  2) the primary age category killed in 

fisheries are young of the year, and 3) white sharks are long-lived.  These factors suggest that 

‘foreseeable’ future should be based on generation time since effects on yearlings will manifest 

into population risk on that timeframe.  The lifespan of white sharks (30 years) was also used to 

consider risk since the ‘species’ would persist for at least one lifespan even if there were no 

recruitment.  There is considerable uncertainty about how variable population growth is for white 

sharks given the lack of information on basic life history parameters.  

 

The BRT did not find that consideration of the threat of overutilization led to adopting any 

particular number of generations.  Instead the Team considered other precedents for looking at 

risk timeframes.  The IUCN uses 3 generations for its category of Endangered and 5 generations 

for its category of Vulnerable.  These timeframes seemed reasonable points to assess risk for 

white sharks.  It also seemed reasonable to consider a period of 2 generations as the timeframe 

for foreseeable future given that the threat of overutilization is best considered on a generational 

timescale and using more than one generation seemed prudent given the uncertainties in 

population size and variability. 

 

“Near-extinction” is defined by Regan et al. (2009) as a population that has declined to a size at 

which the probability of extinction in the near future (50 years or the lifespan of the species 

whichever is the longer) is extremely high. The IUCN (2001) criteria use 50 mature individuals 

as a criterion (D1) for their category of Critically Endangered. Following discussion of the 

potential for depensatory processes at various population sizes the BRT felt that the value of 50 

mature individuals used by IUCN for a Critically Endangered species seemed appropriate for the 

near-extinction threshold. 

 

“Dangerously small” population size is a population that is sufficiently small that density 

depensation may occur and that variability in population size resulting from fluctuations in the 

environment could result in reaching near-extinction. The IUCN criterion D1 uses 250 mature 

individuals for their category of Endangered. A population with less than 250 mature individuals 
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would also be considered at high risk of extinction and this level seems to fit numerous cases 

also listed under the ESA. Therefore we use 250 mature adults as our threshold for a dangerously 

small population.  

 

Given that population models for white sharks were constructed in terms of females only, 

threshold were defined in terms of mature females rather than mature individuals, assuming a sex 

ratio of approximately 50:50. Further details on the term 'near extinction' can be found in Regan 

et al. (2009) together with more rationale for the use of 50 mature individuals. 

 

Definitions of risk categories 

 

To determine high risk we considered two categories:  

1) the declining population category (where the population declines to near-extinction 

within a certain timeframe),  

2) the small population category (where the population is dangerously small currently).  

 

High Risk--a population is at high risk if it meets either condition: 

A. the population has a 5% chance of falling below 50 mature individuals (25 mature 

females) in 60 years (~3 generations) 

B. the current population is less than 250 mature individuals (125 mature females). 

 

We related Medium risk to our High risk categories by adding 40 years (~2 generations) as our 

definition of ‘foreseeable future’. The medium risk category is based on the idea of becoming a 

high risk population within an additional ~2 generations. 

 

Medium Risk--a population is at medium risk if it meets either condition: 

A. the population has a 5% chance of falling below 50 mature individuals (25 mature 

females) in 100 years (~5 generations) 

B. the population has a 5% chance of falling below 250 mature individuals (125 mature 

females) in 40 years (~2 generation times). 

 

Low and very low risk categories do not have the two categories like the high or medium risk 

categories.  

 

Low risk-- The population does not meet the criteria for medium or high risk but the population 

has at least a 10% probability of showing a decline within 100 years (~5 generations).  

 

Very low risk-- The population does not meet any of the above criteria for high, medium, or low 

risk. The population has a high probability of being stable or increasing.
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Figure 4.18  Stochastic projection example (20 trajectories per panel) of adult female abundance (on log scale) 

out to 60 and 100 years from present, under four scenarios of present-day adult female abundance (indicated 

in left margin) and five scenarios of adult female bycatch mortality (Cadult;top margin).  Horizontal dotted 

lines indicate the thresholds of: 25 (“near-extinction”, red) or 125 (“dangerously small”, blue) adult females. 
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Figure 4.19  Stochastic projection summaries of adult female abundance (on log scale) out to 60 and 100 years 

from present, under four scenarios of present-day adult abundance (indicated in left margin) and five 

scenarios of adult female bycatch mortality (Cadult; top margin).  Horizontal dotted lines indicate the 

thresholds of: 25 (“near-extinction”, red) or 125 (“dangerously small”, blue) adult females.  The solid black 

line represents the median projected abundance through time.  Gray lines depict the 5th and 95th percentiles 

of the abundance projections corresponding to the 90% confidence intervals.  

 

Cadult = 0 Cadult = 2 Cadult = 5 Cadult = 10 Cadult = 1 
N ≈  

60 - 125 

 

N ≈  

125 - 200 

 

N ≈  

200 - 400 

 

N ≈  

400 – 

1600  

 



 

 101 

Table 4.15  Probability (P) of adult female abundance declining to “near-extinction” (≤ 25 adult females) 

within 60 years (N60; high risk) or 100 years (N100; medium risk), under 4 scenarios of present-day adult 

female abundance (N0) and 5 scenarios of adult female bycatch mortality (Cadult).  Probabilities are calculated 

as the proportion of projections out of ≈11,000 that decline to ≤ 25 adult females within 60 or 100 years.  

Colors correspond to high (red), medium (orange), low (yellow), or very low (green) risk levels (see footnotes 

and text for threshold criteria). 

 Cadult = 0 Cadult = 1 Cadult = 2 Cadult = 5 Cadult = 10 

Time frame: 60 years      

     N0 ≈ 60 – 125 0.263 0.332 0.393 0.556 0.760 

     N0 ≈ 125 – 200 0.002 0.003 0.005 0.017 0.067 

     N0 ≈ 200 – 400 0.000 0.000 0.000 0.000 0.001 

     N0 ≈ 400 – 1600 0.000 0.000 0.000 0.000 0.000 

Time frame: 100 

years 

     

     N0 ≈ 60 – 125 0.360 0.432 0.508 0.677 0.854 

     N0 ≈ 125 – 200 0.006 0.013 0.017 0.046 0.152 

     N0 ≈ 200 – 400 0.000 0.000 0.000 0.001 0.004 

     N0 ≈ 400 – 1600 0.000 0.000 0.000 0.000 0.000 
Red (high risk): P(N60 < 25) > 0.05 

Orange (medium risk): P(N100 < 25 or N40 < 125) > 0.05 

Yellow (low risk): Above criteria not met but P(N100 < N0) > 0.1 

Green (very low risk): Above criteria not met 
 
Table 4.16 Probability of adult female abundance declining to <125 adult females within 40 years (medium 

risk), under 4 scenarios of present-day adult female abundance (N40) and 5 scenarios of adult female bycatch 

mortality (Cadult).  Probabilities are calculated as the proportion of projections out of ≈11,000 that decline to < 

125 adult females within 40 years.  Colors correspond to high (red), medium (orange), low (yellow), or very 

low (green) risk levels (see footnotes and text for threshold criteria). 

 Cadult = 0 Cadult = 1 Cadult = 2 Cadult = 5 Cadult = 10 

Time frame: 40 years      

     N0 ≈ 60 – 125 0.762 0.806 0.832 0.901 0.959 

     N0 ≈ 125 – 200 0.141 0.163 0.19 0.272 0.436 

     N0 ≈ 200 – 400 0.007 0.01 0.01 0.016 0.035 

     N0 ≈ 400 – 1600 0.000 0.000 0.000 0.000 0.000 
Red (high risk): P(N60 < 25) > 0.05 

Orange(medium risk): P(N100 < 25 or N40 < 125) > 0.05 

Yellow (low risk): Above criteria not met but P(N100 < N0) > 0.1 

Green (very low risk): Above criteria not met 
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Table 4.17 Probability of adult female abundance declining (Nt=100 < Nt=0) over the course of 100 years (Low 

risk), under 4 scenarios of present-day adult female abundance (N0) and 5 scenarios of adult female bycatch 

mortality (Cadult).  Probabilities are calculated as the proportion of projections out of ≈11,000 that decline 

over 100 years. Colors correspond to high (red), medium (orange), low (yellow), or very low (green) risk levels 

(see footnotes and text for threshold criteria). 

 Cadult = 0 Cadult = 1 Cadult = 2 Cadult = 5 Cadult = 10 

Time frame: 100 

years 

     

     N0 ≈ 60 – 125 0.675 0.737 0.782 0.887 0.964 

     N0 ≈ 125 – 200 0.244 0.287 0.316 0.423 0.616 

     N0 ≈ 200 – 400 0.132 0.139 0.145 0.189 0.264 

     N0 ≈ 400 – 1600 0.078 0.079 0.080 0.088 0.103 
Red (high risk): P(N60 < 25) > 0.05 

Orange (medium risk): P(N100 < 25 or N40 < 125) > 0.05 

Yellow (low risk): Above criteria not met but P(N100 < N0) > 0.1 

Green (very low risk): Above criteria not met 
 
The proportions of population trajectories declining below 25 (“near-extinction”) and 125 (“dangerously 

(“dangerously small”) adult females after 60 and 100 years were calculated (Table 4., Table 4., 
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Table 4.17) for all adult female abundance and mortality scenarios.  Individual stochastic 

population projections, in relation to these thresholds, are shown in Figure 4.18 and summarized 

in Figure 4.19.   

 

For the scenario in which present-day adult female abundance is estimated to be between 60 – 

125, the population would be considered at high risk under all adult female bycatch scenarios, 

both by definition (because the current abundance is below 125 adult females) and because the 

probability that the population will decline to less than 25 adult females within 60 years is 

greater than 0.05 (Table 4.). 

 

For the scenario in which present-day adult female abundance is estimated to be between 125 – 

200, the population would be considered at medium risk under the four lowest adult bycatch 

scenarios, because the probability of declining to less than 125 adult females within 40 years 

exceeds 0.05 (Table 4.).  However, the probability of declining to less than 25 adult females 

within 100 years did not exceed 0.05 (Table 4.).  The population would be considered at high 

risk under the highest adult female bycatch mortality (Cadult = 10), because the probability of 

declining to less than 25 adult females within 60 years exceeds 0.05 (Table 4.).   

 
For the scenario in which present-day adult female abundance is estimated to be between 200 – 400, the 

400, the population would be considered at low risk under all of the adult female bycatch scenarios 

scenarios considered (Table 4., Table 4., 
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Table 4.17).  The probability of declining to less than 25 adult females within 60 or 100 years, or 

to less than 125 adult females within 40 years, would be very low (less than 0.05).  However 

there is some non-trivial probability (> 0.10) that the population would experience some level of 

decline within the next 100 years. 

 
Finally, for the highest abundance scenario in which present-day adult female abundance is estimated to be 

estimated to be greater than 400 adult females, the population would be considered at low or very low risk 

very low risk under all of the adult female bycatch scenarios (Table 4., Table 4., 
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Table 4.17).  Only for the highest level of adult female bycatch considered (Cadult = 10) would the population 

be expected to decline at all with any substantial probability (P > 0.1) (
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Table 4.17). The probability of declining to less than 25 adult females within 60 or 100 years, or 

to less than 125 adult females within 40 years, would be essentially zero. Overall the PVA results 

indicated that at population levels of 200 and greater, there is low to very low risk associated 

with fisheries mortality on adult females and YOY and juvenile white sharks. 

 

In addition to assessing extinction risk under different scenarios of female abundance and 

bycatch, the model approach estimated catch and mortality rates of YOY and juveniles. Catch 

and mortality rates informed the plausibility of the different abundances. For the lowest two 

abundance scenarios considered analytically plausible (N ≈ 60 – 125 and N ≈ 125 – 200), the 

corresponding annual catch rates for YOYs (means = 0.49 and 0.27, respectively) are extremely 

and perhaps unrealistically high.  Population removal rates for sharks, even for selective gears 

(such as pelagic longlining), are probably less than 0.20 (Worm et al. 2013).  For populations of 

marine mammals and sea turtles known or suspected to be declining because of high bycatch 

mortality, the mortality rate on affected age classes from gill net bycatch is typically less than 

0.10 (see Appendix I, Table I.1).  Vaquita porpoises – which are Critically Endangered (IUCN 

Red List), believed to be precipitously declining, and subjected to extremely intensive gill net 

exposure throughout their range– have an estimated bycatch mortality rate near 0.20 based on the 

model used in Jaramillo-Legorreta et al. (2007).  It would be astonishing if gill nets had the 

efficiency to capture > 0.20 of white shark YOYs each year, especially given that the available 

bycatch estimates come from small fishing fleets operating throughout a limited portion of 

known or suspected YOY nursery habitat (i.e., most of the recorded bycatch comes from just 6 

boats operating in Sebastián Vizcaíno Bay, Mexico, O. Sosa-Nishizaki, CICESE, pers. comm.).  

If even 0.20 of YOYs are captured annually, then existing YOY catch estimates (> 150) suggest 

YOY abundance on the order of at least 1000.  Given suspected underestimates of bycatch and 

the likelihood that < 0.20 of YOYs are captured each year, the true number of YOYs may be 

much greater (low thousands).  This information challenges the plausibility of the lower 

abundance-level scenarios (< 200 adult females) considered in this assessment. The BRT 

concluded (Section 4.4.3.3) that a female white shark abundance greater than 200 was most 

plausible.  

 

One model consideration that should be discussed is the uncertainty in bycatch estimates. 

Consideration must be given to how the assessment would be affected by different catch 

estimates.  If true bycatch is higher than the estimates, this would, as noted above, make all but 

the highest abundance (low-risk) scenario seem dubious.  On the other hand, true juvenile 

bycatch could be lower than what was used for the assessment. The large numbers of catches 

reported from Sebastián Vizcaíno Bay have not been scientifically verified, and although they 

are believed by Mexican researchers to be valid (Section 4.1.1.4), there is the possibility that 

species were misidentified.  If true catches are lower than the available estimates, this would 

decrease the estimates of YOY mortality rates and increase the plausibility of results for the 

lower abundance (higher-risk) scenarios. Results are conditional on existing bycatch estimates, 

which likely contain an unquantifiable degree of bias and should be interpreted with caution.   
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4.6. Risk assessment conclusions and overall assessment of extinction risk for the NEP 

white shark population 

 

4.6.1. Risk assessment conclusions   

 

To evaluate the overall extinction risk of the NEP white shark population, the BRT conducted a 

final SEDM assessment that considered all available information from the status review 

including the threats assessment (Section 4.2), direct or indirect indicators of population trends 

(Section 4.3), information on population abundance including updated mark-recapture analysis, 

haplotypic diversity and evaluation of factors biasing available population abundance estimates 

(Section 4.4) and extensive population modeling to assess risks associated with fisheries bycatch 

impacts (Section 4.5). Based on this information and uncertainty about the future, the BRT 

allocated plausibility points among 4 risk categories as defined in section 4.5.2.  

 

High Risk - The population has at least a 5% chance of falling below 50 mature individuals (25 

mature females) within 60 years (~3 generations) or the current population has less than 250 

adults (125 mature females).  

 

Medium Risk - The population has at least a 5% chance of falling below 50 mature individuals 

(25 mature females) within 100 years (~5 generations) or below 250 mature individuals (125 

mature females) within 40 years (~2 generations).  

 

Low Risk- The population is neither at high or medium risk, but has at least a 10% chance of 

decline within the next 100 years (~5 generations).  

 

Very low Risk - The population is not at high, medium or low risk. The population has a high 

probability of being stable or increasing 
 

Based on the results of the SEDM (Table 4.18) the BRT concluded that the NEP white shark 

population is likely to be at a very low to low risk of extinction (86% of plausibility points) not 

likely to become endangered in the foreseeable future (for complete voting record see Appendix 

K).     

 
Table 4.18  Summed SEDM weights for each risk category for the final SEDM point allocation assessing 

extinction risk.  

Risk Category Average SEDM weight 

(SD) 

Very low 50 (19.3) 

Low 36 (12.8) 

Medium 9 (8.3) 

High 5 (5.6) 

 

 

The following text summarizes the BRT’s conclusions with regards to current and future threats, 

uncertainty, current abundance estimates and population trends that support the voting results.  
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The level of extinction risk facing a population depends on information about population 

abundance, trends in abundance or other population indicators, potential threats to the population 

over time and uncertainty about the future.  Fisheries-related mortality was the only 

anthropogenic threat considered by the BRT to be a potentially substantial risk factor for the 

NEP white shark population.  Other threats such as physiological effects of contaminants or 

ocean acidification from climate change were acknowledged as factors that could adversely 

affect the population, but the BRT thought these factors would have relatively minor population-

level consequences within the foreseeable future compared to direct fisheries-related mortality.  

Depletion of white shark prey (pinnipeds and fish stocks) from human activities may have had 

historical consequences for white shark population levels, but pinniped populations have 

increased over the last several decades and many fish stocks have similarly recovered or have 

been recovering and so prey depletion was not considered to be a concern for the white shark 

population now or in the foreseeable future. 

 

A number of factors influenced the BRT’s assessment of population abundance and extinction 

risk. One of the most important pieces of evidence for a low to very low risk of extinction comes 

from the available bycatch data.  The level of YOY and juvenile bycatch mortality estimated for 

U.S. fisheries and reported for Mexican fisheries is not consistent with a “very small” 

population.  If adult female abundance is presently less than 200 individuals, the estimated YOY 

bycatch would correspond to removing on the order of 20% to 70% of estimated annual pup 

production.  The BRT considered such removal levels to be highly implausible for gillnets which 

are not selective, given that removal rate estimates for other shark populations (Worm et al. 

2013) and gillnet mortality estimates for other coastal protected species (e.g., marine mammals, 

sea turtles) are generally less than 10% and virtually always less than 20%. Removing more than 

20% of the population seems especially unlikely given that the available white shark bycatch 

estimates come from fisheries operating in only a relatively small portion of YOY nursery 

habitat.  Assuming, therefore, that gillnets are most likely removing less than 20% of annual pup 

production, the level of YOY and juvenile bycatch currently documented to be occurring 

suggests that the NEP population consists of at least a few hundred adult females.   

 

The genetic haplotypic diversity for the NEP white shark population is another factor that the 

BRT considered in assessing adult female abundance. The available haplotype diversity for this 

population is consistent with a population consisting very recently (within the last few 

generations) of at least several hundred to several thousand adult females. The question is 

whether the abundance remains at this level presently or whether the population was recently 

severely depleted.  The historical projection models suggest that while some level of population 

decline may have occurred in recent decades, the level of historical bycatch that would have been 

required to deplete a population of 1,000 adult females in 1971 to fewer than 100 or 200 

individuals now is inconsistent with available information about historical bycatch levels 

(Sections 2.3, 4.1.4 and Appendix B). This suggests that the haplotypic diversity reflects a 

current adult female population size of at least a few hundred to a couple thousand adult females.  

 

If current adult female abundance exceeds 200 adult females as the BRT has concluded is most 

likely, then this implies that the empirical estimates based on the photo-ID data from Guadalupe 

Island and central California do not represent an accurate assessment of the abundance of the 
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entire population.  This bias could be explained by several factors considered highly plausible by 

the BRT, including:  

 

1) Under sampling of females at the coastal aggregation sites due to a temporal mismatch in 

sampling with respect to the timing of arrival by females to those sites;  

2) Under sampling of females relative to males at the coastal aggregation sites due to spatio-

behavioral factors (e.g., differences in territoriality patterns, time spent at depth, 

likelihood of approaching bait);  

3) Non-availability of both females and males at the fixed sampling locations at the coastal 

aggregation sites, due to area -restricted movements of sharks around the pinniped 

rookery areas; or  

4) Non-availability of both females and males at the coastal aggregation sites because they 

do not use the surveyed aggregation areas at all (e.g., use other pinniped rookery areas or 

do not feed substantially on marine mammal prey).   

 

The strongly skewed sex ratio of observed white sharks at the coastal aggregation sites is more 

consistent with differential availability of males and females to sampling, as seen in other 

location, than with a true skew in the population's sex ratio. This is based on the lack of evidence 

for the sex-biased mortality of juveniles that would be required to explain the observed sex ratio 

skew in the subadult and young adult class as a true population phenomenon. In addition, 

differential habitat use between the sexes is common among sharks and in lamnids specifically.  

 

Although population trend information is somewhat inconclusive, the BRT concluded that the 

available information is consistent with a stable or increasing population and not obviously 

indicative of a declining population (and hence not consistent with most high-risk population 

projection scenarios).  White shark CPUE has increased since the mid-1990s in the U.S. west 

coast set net fishery, which would be expected for an increasing population.  This increase 

coincides with changes in fishery regulations (e.g., the high seas drift gillnet ban, time-area 

closures within U.S. waters) and declining fishery effort in U.S. west coast net fisheries.  

Increasing abundance at Guadalupe Island and increased incidence of white shark attacks on 

marine mammals at the California Channel Islands may also suggest that the population is 

increasing, but could simply indicate increased use of certain areas, and not necessarily 

increasing population-wide abundance.  However, the possibility that increased use at Guadalupe 

Island and the California Channel Islands could be decoupled from abundance trends for the 

whole population implies the existence of a larger source population apart from the aggregation 

areas (unless all external recruitment to Guadalupe Island is from the central California 

aggregation), again indicating an adult population size larger than what has been estimated based 

on photo-ID data for Guadalupe Island and central California. 

 

 

4.7. Suggestions for future research 

 

There are a number of gaps in our understanding of the biology, ecology, population dynamics 

and human interaction that lead to a level of uncertainty in the status review. Additional research 

is needed. The BRT recommends continuation of photo-ID studies at Guadalupe Island, Mexico 

and central California including: 1) comparing the two databases; and 2) expanding temporal and 
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spatial scope to encompass more of the range of white sharks. We also recommend expanding 

the genetic studies to: 1) include nuclear markers; 2) compare samples from both aggregation 

sites and across the range; and 3) analyze samples of YOYs and juveniles with a focus on 

identifying parents.  Additional tagging studies should: 1) focus efforts outside of the two current 

aggregation sites; 2) deploy more SPOT tags on mature females; 3) tags more juveniles in the 

U.S; 4) and tag juveniles and YOY in Mexico. We recommend the continuation of fisheries 

monitoring in Mexico, possibly including sampling at markets and using genetics to validate 

species identification. The MBA biological sampling program has provided valuable data on 

catch in U.S. waters and should be continued. Additional efforts should examine the potential 

impacts of both pollutants and ocean acidification on sharks in general. A number of important 

studies are currently underway and we expect that in the next five year some of these data gaps 

will be filled.  
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Appendix A: Summary of all the SEDM votes taken by the BRT 

  
A number of decisions made by the BRT were made by a structured expert decision making 

(SEDM) voting system. A summary of all factors informed through SEDM voting are provided 

in Table A.1. 

 

Table A.1 Summary of all SEDM voting made by the BRT.   

Decision Description Categories 

Discreteness 
NEP white sharks discrete from other white 

sharks found in the Atlantic and Pacific 

Oceans based on behavioral factors. 

Yes, No 

Significance – 

genetics 
NEP markedly separated based on  genetic 

factors 
Yes, No 

Significant gap in 

range 

Loss of NEP white sharks would result in a 

significant gap in the range of the taxon.  
Yes, No 

SPOR 

Identify whether there are any specific 

portions of the white sharks geographic range 

in the NEP that are significant in terms of the 

population’s overall viability, and if lost it 

would significantly increase the population’s 

risk of extinction. 

Yes, No 

Risk Evaluate the level of historic and current risks low, medium, high 

Trend Evaluate the information suggesting 

population trends 

Increasing, stable, 

decreasing, 

uncertain 

Sex ratio CC 
The sex ratio for adult white sharks at central 

California study sites 
0.2, 0.6, .08, 1 

Sex ratio GI The sex ratio for adult white sharks at GI 0.6, 0.8, 1 

Abundance bias 
By what factor is the abundance in the NEP 

underestimated. none, 1.2, 2, 10 

Female mortality 
Potential number of adult females killed each 

year 
0, 1, 2, 5, 10 

Post model 

abundance bias 

Modeling exercises indicated that the known 

number of YOY's killed each year is not 

possible from the observed number of 

females. A second SEDM point allocation  

was taken on levels of bias for abundance 

estimates. 

1, 1.2, 2, 10 

Final risk 

assessment 

Examine all factors that inform risk, 

abundance and trends to determine the level to 

which the BRT felt that NEP white sharks are 

at risk of extinction. 

High, medium, 

low, very low 
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Appendix B: Examination of the potential for a dramatic population decline 

over the last two generations 
 

 

The NEP white shark population’s genetic haplotype diversity is moderate in comparison to 

other species and haplotypic diversity can provide insight into population abundance (see Section 

2.3). There are two possible scenarios that explain the moderate level of haplotypic diversity. 1) 

The number of mature females is at least several hundred to a few 1000 or 2) it was at that level 

within the last few generations but suffered a recent and dramatic population decline (>90%) (see 

Section 2.3).  The two possible explanations have very different implications regarding the level 

of extinction risk facing the population, with the first explanation indicating the present-day 

population is abundant, and the second explanation indicating that the present-day population has 

undergone a severe decline in the recent past. The BRT conducted the following Monte Carlo 

exercise to attempt to distinguish between these two possible scenarios. The objective was to 

impose relatively high fisheries related mortality to determine whether it was feasible to induce a 

90% population decline over ~ 2 generations. The goal was not to model recent population 

trends.  

 

Methods 

 

For each sample i out of 1000 Monte Carlo simulations, an initial population of nadult,0,i = 500 or 

1000 adult females was projected forward 41 years (mimicking the period 1971 – 2011) using an 

age-structured density-dependent stochastic population model.  The initial population was 

assumed to be at its carrying capacity in 1971 (Ki).  For simplicity, density-dependence was 

assumed to act on the population by affecting juvenile survival rate, Sjuv,i, linearly as a function 

of Nt,i/Ki: 

 

Sjuv,t,i = Sjuv,K,i + (1 − Nt,i/Ki)(Sjuv,max,i − Sjuv,K,i), 

 

where Sjuv,K,i is the juvenile survival rate for a population at equilibrium or carrying capacity (Ki) 

such that λ = 1, Nt,i is the sum of female abundance across ages in year t, and Sjuv,max,i is the 

juvenile survival rate corresponding to the estimate of λmax,i (see Section 4.5.2.1).  Sjuv,K,i was 

found by setting λ = 1 and solving for Sjuv,i using the Euler equation (holding other vital rates for 

Monte Carlo sample i at their values corresponding to the estimate for λmax,i).  Ki was set equal to 

N0,i (i.e., Σnj,0,i), which was estimated by assuming that the population was initially in a stable 

age distribution (according to the Leslie matrix for λ = 1, MK,i) so that female abundance for 

each age j at time zero was equal to nj,0,i = nadult,0,i * uK,j,i/uK,adult,i, where uK,i is the stable age 

eigenvector for the Leslie matrix MK,i. 
 

The population of adult females was projected through time using an approximating model: 

 

 nt+1,i = (Mbyc,t,i nt,i) exp(εt,i) 

εt,i ~ Normal(0, σ = 0.1) 

 

where nt+1,i  is the population size in successive time steps, Mbyc,t,i is the Leslie matrix that varies 

through time with changing Sjuv,t,i, and εt,i describes annual stochastic variation. Mbyc,t,i also 
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reflected intense bycatch mortality.  For years 1971 to 1990, fecundity and age-1 survival 

parameters were each multiplied in the matrix by 0.8 to indicate 20% annual mortality on YOYs 

and 1-year olds, and the subadult and adult survival parameters were multiplied by 0.98 to 

indicate 2% annual mortality on these age classes.  For years 1991 to 2011, these rates were 

reduced to 0.15 for YOYs and 1-year olds and 0.01 for subadults and adults, reflecting reduced 

mortality associated with changing fishery regulations in the U.S. and on the high seas.  These 

rates correspond to the white shark bycatch estimates indicated in Table B.1, which are all 

substantially higher than what has been documented in the available information about historical 

bycatch.  The environmental stochastic parameter εt is a scalar error term applied to abundance in 

all age classes, thus mimicking extreme covariance in the vital rates (i.e., conditions in a given 

year are good or bad for all ages).  A more realistic model would apply stochastic error to the 

individual vital rates each year (with variance on the rates selected to produce the desired 

variance for nadult,t) rather than directly to the age-specific abundances.  The current method was 

used merely for simplicity, with the goal of approximating realistic dynamics in adult abundance, 

not necessarily in the age-specific dynamics from year to year. 

 

Table B.1 Average white shark bycatch (across 1000 Monte Carlo simulations) estimated for 1971 

(start of time series) and 1995 (after cessation of high seas drift net fishing and protective regulations 

in the U.S.), given initial populations of 500 or 1000 adult females in 1971, and given bycatch 

mortality rates in population transition matrix Mbyc,t,i.  Values in the table are for females (and for 

both sexes in parentheses assuming sex ratio parity). 

 n0,adult = 500 females n0,adult = 1000 females 

 1971 1995 1971 1995 

YOY and juvenile bycatch 325 (650) 160 (320) 650 (1300) 325 (650) 

 

subadult and adult bycatch 20 (40) 7 (14) 40 (80) 13 (25) 

 

 

Results 

 

The assumed levels of bycatch mortality in this exercise were sufficient to cause strong 

population declines over the course of 40 years (Figure B.1), although the probability that by 

2011, the population would decline to 10% of the population levels in 1971 (100 or 50 mature 

females) was essentially 0. With respect to the different risk scenarios, the probability that they 

would reduce the population from 500 or 1000 adult females to levels that would correspond to 

high risk scenarios (< 125; see Section 4.5.2.3) was low.  If the initial adult female abundance in 

1971 was 500, then there was a 20% chance of decline to < 200 adult females (corresponding to 

medium risk abundance scenarios) and a 5% chance of decline to < 125 adult females 

(corresponding to high risk scenarios) by 2011, given the assumed levels of bycatch mortality.  If 

initial adult female abundance in 1971 was 1000, then depletion of the population to levels that 

would correspond presently to medium (<200 adult females) or high (<125 adult females) risk 

would be highly unlikely.  
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Figure B.1 Projections of adult female abundance from the stochastic density-dependent age-structured 

model.  Initial adult female population size at year 0 (1971) was either 500 (top) or 1000 (bottom). The solid 

black line represents the median projection and the dotted lines represent the 90% CIs.  

 

Discussion 
 

This model is conservative and precautionary in several respects.  Initial female abundance was 

assumed to be only 500 or 1000, whereas genetic haplotype diversity suggests abundance may 

presently be or may have been considerably higher (e.g., in the high hundreds to low thousands).  

The bycatch mortality rates used in the model are high and correspond to numbers of white 

sharks caught and killed in the early-1970s and mid-1990s that far exceed what available 

information suggest were likely to have occurred in the NEP (see Section 4.1.1). The BRT 

acknowledged, however, that elasmobranch discards in high-seas large-mesh drift gill net 
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fisheries during the 1970s and 1980s were poorly documented and could have been substantial.  

In addition, carrying capacity (K) was fixed so that population growth was limited throughout 

the time series by what the environment supported in the early 1970s.  Since that time, prey 

populations for white sharks have increased in abundance, so higher population growth might 

have been achievable in more recent years. 

 

In summary, the scenarios modeled here are intended to represent a pessimistic case, in which 

the historical population abundance included only 500 to 1000 adult females, bycatch mortality 

rates were high (in comparison to rates indicated by the available bycatch data), and the carrying 

capacity of the population remained fixed at historical, potentially reduced levels (due to reduced 

prey abundance in the 1970s).   

 

Based on results of these analyses, it seems unlikely that the NEP population of adult female 

white sharks would have declined over a short time period (e.g., last 40 years) from levels 

consistent with the genetic haplotype data (adult females numbering in the high hundreds or 

thousands) to levels represented by the survey estimates from central CA and Guadalupe Island 

(~ 50 adult females).  Some declines could have occurred since the 1970s, but model results 

suggest that the number of mature females still likely numbers at least in the low hundreds today.  
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Appendix C:  DPS determination 
 

DPS - Determination of discreteness 

The BRT considered whether the NEP white shark population is discrete and significant and 

constitutes a DPS, as defined by the NMFS/FWS DPS policy (61 FR 4722, February 7, 1996). 

For each issue, detailed arguments for and against each option--and the resulting distribution of 

plausibility points--are provided below to fully document the BRT’s decisions outlined in the 

text of this status review. 

 

Evaluation of DPS Discreteness Criteria- Are NEP white sharks markedly separated 

from other populations of the same taxon as a consequence of behavioral factors? 

 

Arguments in favor of marked separation based on behavioral uniqueness 

 

The distribution of white sharks in the NEP is markedly separated from the South and western 

North Pacific and other global populations based on  

 Tagging data 

o Satellite tagging data show no movement outside the NEP.YOYs are known to remain in 

coastal shelf waters off California, primarily south of Point Conception to Sebastián 

Vizcaíno Bay. Adults migrate from at least the two primary aggregation sites to offshore 

areas stretching as far west as the Northwest Hawaiian Islands. With over 100 sharks 

tagged with satellite tags in the NEP, there have been no observed movements across the 

equator or west of the Hawaiian Islands. Furthermore, white sharks satellite-tagged in the 

Southwest Pacific near Australia and New Zealand have similarly not migrated into the 

NEP (Bruce et al. 2006, Duffy et al. 2012). 

 

 Photo-ID data 

o Photo-ID shows strong site fidelity of adults to coastal aggregation sites. Males are 

observed to return predominantly on a yearly basis with some individuals returning to the 

same sites for up to 22 years (Anderson et al. 2010). Females are observed to return on 

either an annual or semiannual basis. This pattern is thought to be linked to reproduction 

and parturition.  

 

 Genetic data (mitochondrial DNA) 

o Genetic data from the central California coast show a group of closely related haplotypes 

that are not found in the nearest other white shark populations (Japan, Australia/New 

Zealand or South Africa).  Although the sample sizes are relatively small from all the 

regions, the general pattern of finding only related haplotypes within most regions 

(monophyletic) strengthens the inference that little movement is occurring between these 

regions.  Although mitochondrial data represent female inheritance, the genetic data 

coupled with the movement data from tagging (that shows that males stay within the 

region and have more limited movements than females) suggests separation of the NEP 

from other regions. 

 

Arguments against marked separation based on behavioral uniqueness 
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There are inadequate data from white sharks that potentially never are available for sampling at 

the coastal adult aggregation areas.  Arguments against behavioral separation are: 

 

 Tagging Data 

o Tagging bias likely underestimates the extent of potential mixing with other white 

shark populations. All individuals have been tagged in only a few locations, e.g., 

YOYs in southern California and subadults and adults at the central California or 

Guadalupe Island aggregation sites.  Although both tagging data and photo-ID data 

indicate site philopatry, there may be a portion of NEP white sharks with significantly 

different behavior, especially those that may feed on fish rather than pinnipeds. The 

tagging and photo-ID data may bias our understanding of the magnitude of separation 

of NEP white sharks from other white shark populations.  

 

 Genetic data 

o The sample distribution is inadequate to characterize genetic separation, because the 

samples included in the genetic analysis were collected only from the central 

California aggregation sites. Site fidelity combined with restricted sampling likely 

results in non-representative sampling of the overall NEP white shark population.  In 

addition, relatively few samples are available from other areas (South Africa, 

Australia/New Zealand and Japan).  The high number of haplotypes represented by 

only a single individual strongly suggests that haplotypic diversity is as yet poorly 

quantified.  Consequently, the conclusions that there are no shared haplotypes 

between white sharks in the NEP and other regions are weakened.   

 

NEP white sharks also show no behaviorally unique characteristics such as dietary 

specialization, life history differences or migratory behavior in comparison to white sharks 

observed in other regions.  

 

DPS – Determination of Significance 

 

Evaluation of DPS Significance Criteria- Is there evidence that NEP white sharks differ 

markedly from other populations of the species in their genetic characteristics? 

 

Arguments in favor of marked genetic differentiation 

 

NEP white sharks differ markedly from other populations of the species in their genetic 

characteristics.  Evidence supporting marked differences is: 

 NEP white shark mtDNA haplotypes form a weakly supported monophyletic clade. 

o NEP white sharks cluster together in relation to haplotypes from Japan, Australia, 

New Zealand, and South Africa and no haplotypes are shared with these other 

regions. 

 

o The magnitude of mtDNA differentiation is large enough to infer that time has been 

sufficient and female-mediated gene flow low enough to potentially allow adaptation 

to the NEP habitat and that the NEP would not be readily repopulated by neighboring 

shark populations without such adaptation.  Geneticists use one effective migrant per 
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generation as a rule of thumb for the level of gene flow below which adaptation to 

local habitat is likely.  Comparisons of the mtDNA of the NEP white sharks to the 

mtDNA of white sharks in all other geographic strata indicate less than one migrant 

per generation between the NEP and these other regions.  The genetically most-

closely related population is Australia/New Zealand and the time estimated since 

divergence is estimated to be ~150kya. 

 

 

 Although there are no published nuclear data for the NEP, tagging data show no movement 

of males outside the NEP and these tagged males have demonstrated site-fidelity through both 

tracking data and photo-ID data.  

o Many of the individuals in the genetic study that included NEP samples were known 

adult males with photo-ID histories.  All of these males had haplotypes indicating a 

NEP origin.  These observations are consistent with a closed population without 

male-mediated gene flow between the NEP and other regions. 

 

 Arguments against marked genetic differentiation 

 

NEP white sharks might not differ markedly from other populations of the species in their 

genetic characteristics.  Arguments against marked differentiation are: 

 

 The sample size and distribution is inadequate to characterize genetic separation 

o The proportion of the NEP population sampled is likely to be relatively small given 

the relatively high number of haplotypes represented by only a single individual.  

Further, the published data do not include any samples from Guadalupe Island which 

represents a substantial proportion of the estimated adult population. There are also 

no samples from other areas within the range of the NEP population (e.g., near 

Hawaii), which may exclude animals that don’t regularly visit the two studied 

aggregation sites.  

 

 NEP white sharks are potentially not significantly different from adjacent white shark 

populations because of possible male-mediated gene flow. The lack of published analysis of 

nuclear markers in the NEP does not allow inference about how marked genetic differentiation 

might be.  

o Another plausible scenario that may reduce the genetic differentiation of NEP white 

sharks involves male mediated gene flow. Pardini et al. (2001) showed that nuclear 

markers indicated male mediated gene flow in white sharks whereas mitochondrial 

markers showed limited female mediated gene flow. The low level of gene flow 

needed to overwhelm local adaptation (roughly 1 migrant per generation) would be 

difficult to detect using photo-ID and tagging studies, which are short in duration (the 

longest time series is about10 years, which is roughly half of one shark generation).  

Even if breeding occurs at the aggregation sites (which remains uncertain), detecting 

low numbers of males from outside the NEP would be difficult.  If breeding occurs 

offshore, then detection of males from outside the NEP would not be possible.  
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Evaluation of DPS Significance Criteria- Would loss of NEP white sharks result in a 

significant gap in the range of the taxon? 

 

Arguments in favor of loss of the NEP population resulting in a significant gap in the 

range of the taxon 

 

White sharks are found in temperate waters in the North Pacific, Southwestern Pacific, North 

Atlantic and South Atlantic.  Evidence in support of the loss of the NEP white sharks resulting in 

a significant gap in the range of the taxon: 

 The NEP represents a large portion of the range of the species (over 20%).    

 The strong phylogeographic patterns of mtDNA are consistent with rare colonization 

events with little to no immigration events thereafter.  

 

Arguments against loss of NEP resulting in a significant gap in the range of the taxon 
 

White sharks have similar life histories and prey types globally.  Loss of the NEP population 

would not diminish the ability of white sharks to persist as a species because: 

 The similar ecological function of white sharks globally reduces the importance of losing 

any single population to the evolutionary potential of white sharks. 

 The presence of white sharks in adjacent waters off Japan and Australia/New Zealand 

suggests that recolonization of the NEP could occur on an evolutionary timescale.  

 

DPS – Plausibility point allocation by BRT team members 

The BRT used a structured expert decision making (SEDM) approach to evaluate whether the 

NEP white shark population met the DPS criteria of discreteness and significance. BRT members 

independently allocated plausibility points on the discreteness and significance criteria using the 

likelihood point method, whereby each member distributed 100 points between the arguments 

for and against each factor.  Point allocation in this manner allowed individual BRT members to 

express their level of certainty on each of the factors, such that placement of all 100 points either 

for or against a particular factor would indicate certainty in the arguments or evidence presented.  

BRT members agreed to view resulting plausibility points with the members' names associated to 

facilitate discussion and assure that linguistic uncertainty was not responsible for any disparate 

point allocations.  The BRT discussed the point allocations and in some cases adjusted points 

when prior articulation of the arguments had been unclear.  Individual final BRT member point 

allocations, renumbered on each ballot to retain anonymity, and the overall proportion of points 

for arguments for or against each factor are shown in the tables below. 
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Table C.1 Summary of BRT point allocations on A) the discreteness, B) and significance based on genetics 

and C) significance based on gap in the range for NEP white sharks.  

 
A. Factor 1. Are NEP white sharks markedly 

separated based on behavioral factors 

Member Yes No Total 

1 95 5 100 

2 90 10 100 

3 95 5 100 

4 90 10 100 

5 90 10 100 

6 95 5 100 

7 95 5 100 

8 90 10 100 

Avg 0.92 0.08 1 

 
B. Factor 1. Are NEP white sharks significant 

based on genetic factors  

 

C. Factor 2. Loss of NEP white sharks would 

result in a significant gap in range 

Member Yes No Total  Member Yes No Total 

1 85 15 100  1 100 0 100 

2 85 15 100  2 100 0 100 

3 55 45 100  3 90 10 100 

4 90 10 100  4 95 5 100 

5 80 20 100  5 95 5 100 

6 80 20 100  6 100 0 100 

7 85 15 100  7 90 10 100 

8 85 15 100  8 100 0 100 

Avg 0.81 0.19 1  Avg 0.96 0.04 1 
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Appendix D:  MBA sampling program characterization 
 

In 2002 the Monterey Bay Aquarium initiated a scientific collection program for both live and 

dead sharks, asking fishermen to notify them of any white shark bycatch. Additional data for the 

period prior to the program were obtained from one vessel that caught 3 sharks over 5 years.  

From 2002-2005 the program included 4 vessels. In 2005 they started a more extensive outreach 

campaign and by 2011, 15 vessels were involved. A monetary award was given to fishermen 

who brought in sharks to compensate them for their time given that for live fish in particular it 

could take hours to transfer them to aquarium staff and collaborators. The amount of the award 

and the low incidence of catch are inconsistent with fishermen intentionally shifting fishing 

effort to target white sharks as a part of this program. On average fishermen working with MBA 

caught one shark a year.  It is believed, however, that during the period of the MBA program 

reporting rates increased especially after 2005. Over the course of the program a total of 53 live 

and 52 dead sharks were recorded. The majority of dead sharks (19) came from one fisherman 

who has since left the fishery. The program has provided invaluable data on movements, 

behaviors, habitat use, pollutant loads, fisheries interactions and genetics and is the source of 

most of the data available for YOY and juvenile white sharks in the NEP.  
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Appendix E: Summary of SEDM voting on population trends 
 

The results from the BRT SEDM voting process on the plausibility that the population of NEP 

white sharks is increasing, stable or decreasing. Also included is a level for uncertainty. See 

Section 4.3. 

 

Table E.1 Summary of BRT point allocations on population trends.  

BRT 

Member increase stable decreasing uncertain 

1 45 30 0 25 

2 50 25 25 0 

3 40 30 10 20 

4 50 40 0 10 

5 30 10 5 55 

6 40 30 5 25 

7 40 40 0 20 

8 40 30 0 30 

Avg 41.9 29.4 5.6 23.1 

Stdev 6.5 9.4 8.6 16.0 
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Appendix F. Mark recapture analysis methods 

 
Mark-recapture analyses were conducted using the Photo-ID data from both Guadalupe Island 

and the two sites in central California. Analyses conducted by the BRT included the data used in 

publications (Chapple et al. 2011, Sosa-Nishizaki et al. 2012), as well as new data on white shark 

size and sex at both study areas and two additional years of sightings data and monthly sampling 

effort (Table F.2) at Guadalupe Island. Analyses were conducted to reexamine the white shark 

abundance estimate cited in the petition of 339 subadults and adults (based on the estimates from 

Chapple et al. 2011, Sosa-Nishizaki et al. 2012), and to examine the potential for trends at 

Guadalupe Island where there is a longer time series.  

  

For the analyses, the BRT used R package RMark version 2.1.3 (Laake and Rexstad 2011) as an 

interface to the program MARK version 6.1 (Cooch and White 2011) to apply mark-recapture 

models to the data from each of the study areas. The open-population POPAN model was applied 

to both study areas.  

 

POPAN estimates 4 parameters directly (N, φ, p, and pent). N is the superpopulation size or all 

animals at the site over the study period. The parameter φ is sometimes called "apparent 

survival", and quantifies the individuals that have remained at the site and were not lost to 

emigration or mortality. The p parameter is the probability of detecting an individual on a given 

sampling occasion, given that it was actually present at the site. The pent parameter is the 

probability of recruitment of new individuals into the group at the site on each new sampling 

occasion. The N parameter, or "superpopulation", represents all the individuals that were ever at 

the site during the study, including those that have since died or emigrated away.  

 

Mark-recapture models can be configured to estimate each of the parameters as either a single 

constant, or as multiple values that can vary with time or by sex. A variety of additional derived 

parameters, such as the numbers of individuals present at a site in each year, can be subsequently 

calculated from the model using the estimated parameters.  

 

For central California, a single data configuration consisting of all the observations over the three 

year period (2006-2008) was supplied to the open-population POPAN model. For model runs, 

configurations using the data categorized as males, females, and unknowns, and alternative 

configurations without sex as a covariate were compared using AICc.  

 

For Guadalupe Island, the longer time series (2001 – 2011) allowed the data to be configured in 

multiple ways.  In addition to the combined model representing all 11 years the BRT calculated 

annual population estimates as well as a three year super population estimate covering the years 

from 2006 - 2008.  

 

For each assemblage from the two sites, at least 500 alternative model configurations 

(combinations of input parameters) were evaluated.  From each set of alternative model 

configurations the best model describing that dataset was selected based on AICc. The POPAN 

models selected based on AICc for both sites are shown in Table F.1. 
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Table F.1  Models selected by AICc for central California and Guadalupe Island.  

Site Configuration selected by AICc 

Central California 

 

ⱷ(~sex + time)p(~time) pent (~time)N(~1) 

Guadalupe 

Island 

ⱷ (~sex + time)p(~sex + effort:male + 

female.effort:female) pent (~1)N(~1) 

 

 

The different configurations included various combinations of non-varying, and time- and sex-

varying parameters, with and without interaction terms. For the models based on the final 11-

year Guadalupe dataset, parameter values from the best models with and without covariates for 

total days of sampling effort per year, and a covariate for the monthly proportion of sampling 

effort that occurred in November to December (totaling 650 alternative model configurations 

based on this final dataset) were evaluated. Model-averaged parameter estimates for the best 5 

models of the 650 total models for the final 11-year dataset were compared to the estimates from 

the best model. 

 

Two measures of sampling effort, the total number of effort-days per year, and the proportion of 

these effort-days occurring in November-December were included as covariates in the 

population assessment modeling. 

 

Table F.2  The number of days of sampling effort in each year at Guadalupe Island from 2001-2011.  

  July Aug Sept Oct Nov Dec Total 

2001 0 0 1 1 1 0 3 

2002 2 2 6 6 6 1 23 

2003 0 9 5 6 15 2 37 

2004 0 3 10 14 19 5 51 

2005 0 6 23 12 13 3 57 

2006 0 11 17 13 11 0 52 

2007 0 6 18 21 6 2 53 

2008 0 14 17 14 2 6 53 

2009 2 10 20 21 12 0 65 

2010 0 16 21 10 1 0 48 

2011 0 9 13 16 6 0 44 
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Appendix G.  Pre-model assessment of sex ratio and abundance biases  
 

Prior to conducting the population analyses the BRT used SEDM to determine the plausibility of 

different sex ratios and abundance biases using the observed data from the two studies at central 

California and Guadalupe Island as a starting point (see Section 4.4.3). The arguments for each 

value considered are provided below.  

 

Questions 1 & 2--Sex ratio at central California sites and at Guadalupe Island:  The BRT 

evaluated the plausibility of different sex ratio (adult female:adult male) estimates for central 

California (Question 1) and Guadalupe Island (Question 2). The low (minimum) estimates of sex 

ratio considered by the BRT were based on observations of the numbers of subadults and adults 

at the different study areas and the sex ratios at the different areas. The data on sex were not 

included in the model run by Chapple et al. (2011) but were provided to the BRT for the purpose 

of the status review. The high (maximum) estimates assume a 1:1 ratio based on the parity 

observed at early life history stages.  One or two intermediate values between the minimum and 

maximum estimates were also considered for each study area. Arguments for the different sex 

ratio values considered are given below.  

 

Minimum values: These values assume that the photo-ID data accurately reflect the sex ratios at 

the two study areas. The lower number of adult females relative to adult males could be 

accounted for by the potential increased risk of mortality to adult females that must come into 

coastal waters to pup. These adult females could become fatally entangled in gear and swim 

away with that gear without being detected.  A low entanglement rate would be sufficient to 

account for the apparent difference between survival and emigration rates of females (0.9) 

compared to males (0.93) (see Section 4.4.2). 

 

Question 1: Minimum sex ratio (Rmin) for Guadalupe Island =0.6 

Question 2: Rmin for central California = 0.2 

 

Maximum values (1:1=females:males): Roughly equal number of males and female YOY and 

juveniles are caught suggesting an equal sex ratio for males and females in their first years.  

Other long-lived species with low reproductive rates tend to have equal sex ratios throughout 

life.   

 

Questions 1 and 2: Maximum sex ratio (Rmax) = 1 

 

Intermediate values: 

Sex ratio could be lower than parity reflecting a higher risk for females but not as low as the 

observed values, reflecting the underestimation resulting from the later arrival of females to the 

aggregation sites. 

 

For Guadalupe Island the intermediate value (Ravg) was calculated as the average between the 

Rmin and Rmax.  

Question 1: Ravg for Guadalupe Island = 0.8 

For central California, two intermediate values were used given the large spread between Rmin 

and Rmax. These values were the Rmin for Guadalupe Island and Ravg for Guadalupe Island.  
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Question 2: Ravg for central California = 0.6 and 0.8.  

 

Question 3--Aggregation site sampling bias arguments (accounting for unsampled 

individuals)  

A SEDM point allocation was conducted to assign plausibility points to the level to which 

mature female white sharks in the NEP were underestimated based on data collected at only two 

study areas (two central California sites and one Guadalupe Island site)..  

B1: No bias--All or nearly all adult female white sharks are sampled at the sampling sites. 

B1.2. 20% more adult female white sharks occur in the NEP than are sampled at central 

California and Guadalupe Island sites. 

B2: Double the estimated value--About half of the adult female white sharks are sampled at the 

sampling sites. 

B10: There are an order of magnitude more adult female white sharks in the NEP than are 

sampled at the sampling sites.  

 

The full voting results regarding the sex ratio bias and bias in adult female abundance estimates 

are shown in Table G.1 and G.2.  

 

Table G.1  Results from SEDM voting on the plausibility of different sex ratio bias estimates at Guadalupe 

Island and central California.  

BRT Member Guadalupe Island  

sex ratios considered 

Central California  

sex ratios considered  

  0.6 0.8 1.0 0.2 0.6 0.8 1.0 

1 70 15 15 10 70 10 10 

2 20 50 30 0 40 40 20 

3 10 85 5 0 60 30 10 

4 30 60 10 0 30 60 10 

5 40 40 20 10 40 40 10 

6 30 40 30 5 30 35 30 

7 30 40 30 5 35 35 25 

8 30 50 20 0 35 35 30 

        

Avg 33 48 20 4 43 36 18 

Stdev 18 20 10 4 15 14 9 
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Table G.2  Results from SEDM voting on the plausibility of different abundance biases for the NEP adult 

female white shark population.  

 
        

BRT 

Member none 1.2 2.0 10.0 

1 25 25 25 25 

2 0 30 50 20 

3 0 10 75 15 

4 0 5 70 25 

5 10 20 40 30 

6 0 20 60 20 

7 5 15 30 50 

8 0 30 50 20 

     

Avg  5 19 50 26 

Stdev 9 9 18 11 
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Appendix H. SEDM arguments for levels of adult female mortality  

 
Using the photo-ID data at Guadalupe Island the BRT estimated apparent survival; the portion of 

the male and female white sharks that returned to the aggregation site over the course of the 

study and were not lost to emigration or mortality. The value for apparent survival was less for 

females (0.9) than males (0.93) at Guadalupe Island by approximately 3% (median values for 

apparent survival are higher for both males (0.98) and females (0.95) than the mean.)  While the 

relative contribution of emigration and mortality cannot be determined, this difference raises the 

possibility that the mortality rate for females is higher than that for males. Based on the SPOT 

data for sharks at Guadalupe Island, adult females are more likely to visit near-shore habitats, 

presumably to pup, and may be vulnerable to entanglement in near shore fishing gear. Large 

females also spend more time on the high seas then males, returning to coastal aggregation sites 

only every other year (Domeier and Nasby-Lucas 2013), and thus may be more vulnerable to 

being caught on the high seas by IUU fishing vessels (Bonfil 1994). To address the potential for 

higher human-induced mortality for females, the BRT considered the plausibility of various 

levels of fisheries mortality on adult females.   

 

Large white sharks are documented in the catch data in the U.S. (Klimley 1985), Mexico 

(Galván-Magaña et al. 2010) and on the high seas (Bonfil 1994) indicating the potential for 

entanglement in fishing gear. Klimley (1985) documented the catch of 27 subadult and adult 

white sharks along the west coast of the US and Canada from 1941 to 1984. Galván-Magaña et 

al. (2010) documented incidental catch of 16 subadult and adult white sharks in the Gulf of 

California from 1964 to 2010, with white shark captures occurring mainly in totoaba gill-nets or 

shrimp trawls. There are reports of five additional subadult and adult mortalities in the Gulf of 

California between 2004 and 2012 (Castro 2012, O. Sosa-Nishizaki, CICESE, pers. comm., E. 

Oñate-González, CISESE, pers. comm., and M. Domeier, MCSI, pers. comm.), and a SPOT 

tagged adult female that is presumed to have died in 2009, potentially due to fisheries catch 

(Domeier and Nasby-Lucas 2013). In summary, in the last 10 years, 9 mortalities of subadult and 

adult white sharks have been documented in the Gulf of California Of these 5 were over ~450 

cm TL and 2 were documented to be females, 2 as males and 5 unknown. These numbers do not 

include the adult female SPOT-tagged shark. 

 

Obtaining direct data on subadult and adult mortality from both natural and human causes is 

difficult. Adults spend most of their time in offshore waters and white sharks will sink when 

dead and thus are not likely to wash up on a beach. Therefore, deaths due to natural causes are 

largely undocumented. Mortality associated with fisheries interactions is likely underrepresented 

by the available data. Given their protected status in both the U.S. and Mexico, catch in fisheries 

may not always be documented.  There may also be sharks that become entangled in gear but go 

unobserved because at their size they could swim away with part or all of the fishing gear and 

later die.  An estimated carcass detection probability of 17% was made for North Atlantic right 

whales killed by either entanglement in fishing gear or ship strikes.  Most whales float when 

dead, so the carcass detection rate is likely to be lower in white sharks that swim away with 

fishing gear. 
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SEDM on the level of annual adult female human-caused mortalities 

 

The BRT used SEDM to express its uncertainty in the number of adult female white sharks that 

may die annually resulting from human activities.  Plausibility points were distributed among the 

following options: 0, 1, 2, 5 and 10 adult female white sharks killed per year.  Arguments for 

each of these levels are given below. 

 

1) Argument for 0 human-caused adult female deaths per year 

There are only 2 adult female white sharks known to have been killed from fishing-related 

activities over the past 10 years.  This low level would be rounded to zero deaths annually in 

most years. Conversations with fishers and experts working in Mexico indicate that catching 

large white sharks is very rare and that most are documented through research or the popular 

press. Also, no females have been reported at Guadalupe Island trailing fishing gear. The male-

female difference in estimated apparent survival would then be attributed to differences in 

emigration which would be consistent with the strong sexual segregation observed in white 

sharks, or to an increased rate of natural mortality for females (e.g., perhaps associated with the 

costs of reproduction).   

 

2) Argument for 1 human-caused adult female death per year 

If reported deaths where the sex is marked as unknown are counted as females and the abrupt 

disappearance of the SPOT-tagged female is included as a fatality, then there have been 8 adult 

female white sharks killed due to fishing activities over the past 10 years. This rounds to one 

adult female white shark killed per year. 

 

3) Argument for 2 human-caused adult female deaths per year 

Although the number of adult female white sharks killed in fisheries may be close to one per 

year (see argument #2 above), this is likely an underestimate. Some white sharks that are 

captured may not be reported and/or entangled animals may swim away with gear and 

subsequently die at sea undetected. To account for these undocumented mortalities, the BRT 

considered the plausibility of 2 adult female white sharks killed per year due fisheries 

interactions. This assumes that only half of the actual mortalities per year are documented.    

 

4) Argument for 5 human-caused adult female deaths per year 

Zero, one or two deaths per year are all likely underestimates of actual adult female mortality 

due to human activity. Since white shark carcasses sink, it is difficult to estimate the amount of 

mortality that goes unreported, but hypothetically, if white shark carcasses had the same 

detection rate as right whales (17%), then one observed death would translate to about 6 deaths.  

If the number of adult females is around 200 (see Table 4.11), then the resulting decrease in 

survival rate would be about 2.5%, which is similar to the estimated difference between male 

(0.93) and female apparent survival, based on the analysis of photo-ID data at Guadalupe Island. 

This would also indicate that there is no difference in rates of emigration between males and 

females in the NEP population. 

 

5) Argument for 10 human-caused adult female deaths per year 

Although based on the available information, the estimated number of adult female white shark 

deaths may be close to one per year, it is possible that this may under-represent mortality by an 
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order of magnitude given the difficulty of detecting dead sharks. The BRT included 10 as a 

potential upper limit to the number of females that might be killed in a given year.  

 
Table H.1  Summary of SEDM voting regarding levels of  

annual adult female mortality due to fisheries interactions.  

 Annual number of adult females 

killed by fisheries interactions 

BRT 

member 

0 1 2 5 10 

1 0 25 40 25 10 

2 10 25 35 20 10 

3 25 35 20 15 5 

4 0 5 45 35 15 

5 0 10 30 50 10 

6 10 30 40 20 0 

7 5 15 40 35 5 

8 25 50 25 0 0 

      

Avg 9.4 24.4 34.4 25.0 6.9 

Stdev  10.5 14.5 8.6 15.1 5.3 

 

The BRT SEDM voting results (Table H.1) indicated that the BRT felt that more mortalities 

were occurring than accounted for in the data and that some animals are either unreported or 

undetected. Plausibility points were spread between 1 and 5 adult female mortalities per year. 

The BRT felt that there is a bit of uncertainty in the actual amount of annual adult female 

mortality for NEP white shark and it is captured in this distribution. 
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 Appendix I: Post-model assessment of adult female abundance bias 
 

Results of the modeling exercises contributed further insight as to the plausibility that the 

observed number of mature females at the photo-ID study sites represented the entirety of the 

NEP adult female population and informed estimates of female abundance bias. For adult female 

abundance associated with bias scenarios of 1 or 1.2 (i.e., NEP adult female abundance = 1x or 

1.2x the sex-ratio-bias-corrected photo-ID estimates) fisheries mortality rates for YOYs are 

estimated to be ~70% and ~ 40% respectively (see Section 4.5.2.1). (Catch and mortality rates 

are similar given the 100% mortality assumed for the majority of the catch). These rates seem 

highly implausible for a number of reasons. Population removal rates for sharks, even for 

selective gears (such as pelagic longlining), are probably less than 0.20 (Worm et al. 2013).  For 

populations of marine mammals and sea turtles known or suspected to be declining because of 

high bycatch mortality, the mortality rate on affected age classes from gill net bycatch is 

typically less than 0.10 (Table I.1). Vaquita porpoises – which are Critically Endangered (IUCN 

Red List), believed to be precipitously declining, and subjected to extremely intensive gill net 

exposure throughout their range– have an estimated bycatch mortality rate ~0.20 based on the 

model used in Jaramillo-Legorreta et al. (2007). It would be exceptional if gill nets had the 

efficiency to capture >> 0.20 of white shark YOYs each year, especially given that the majority 

of available bycatch estimates come from small fishing fleets operating throughout a limited 

portion of known or suspected YOY nursery habitat. Catch rates are highest at the same time of 

year in both Sebastián Vizcaíno Bay and the Southern California Bight, indicating a geographic 

spread in the YOY population. 

 

Table I.1 Estimated fisheries mortality rates for a number of long-lived marine mammals and turtles.  

 

Species Estimated fisheries 

mortality 

Reference 

Vaquita 20% Jaramillo-Legorreta et al. (2007) 

Gulf of Maine harbor 

porpoise 

5.4% Moore and Read (2008) 

Fransicana dolphins 3%-5% 5%, Kinas 2002; 3%, Negri et al. 2012 

Pacific leatherback seaturtles 11% Tomillo et al. 2007 

Australia sea lions 3.9% Goldsworthy et al. 2009 

 

Given the model results, it was apparent that the low levels of abundance bias (1 and 1.2) 

previously considered by the BRT may not be plausible. Therefore, the BRT assigned 

plausibility points a second time to determine the level to which mature female white sharks in 

the NEP were underestimated based on the available photo-ID data. Below are the arguments for 

and against each level of bias considered by the BRT, incorporating information from the 

modeling exercises.  

 

B1 = No bias in abundance estimates --All or nearly all adult white sharks come to the 

sampling sites. (for bias=1 Nf = 48 to 157 depending on the sex ratio bias as the two 

sites) 
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Arguments for: Assuming no bias comes closest to the estimated number of females at the 

sampling sites and is therefore supported with direct data.  Although the single report of YOY 

mortality from Mexico is considered to be the most accurate available estimate, it has not been 

verified and there is no way to verify that this level of catch has been and will be constant 

through time. 

 

Arguments against:  The level of YOY mortality associated with abundance estimates linked to 

bias=1 have unrealistically high mortality (~70%) rates.   Such a high level of YOY catch is 

unlikely for reasons discussed above. Haplotypic diversity is also not consistent with an adult 

female population size below 200 (see Section 2.3, 4.3 and Appendix B). 

 

B1.2= There are a small number of adult female white sharks (20% of the population) 

that do not visit the sampling sites (for bias=1.2 Nf = 57 to 188 depending on the sex 

ratio bias at the two sites). 

 

Arguments for:  Estimates of mature female abundance resulting from this small level of bias 

primarily match the estimated number of adult females at the sampling sites based on the photo-

ID data, allowing for some missed animals.  Some small number of adult females likely visit 

other sites or no sites at all and are thus, not counted in photo-ID studies.  

 

Arguments against:  If these estimates were accurate, then the known levels of YOY mortality 

would constitute ~ 40% of the annual pup production possible from this many adult females.  

Such a high level of YOY mortality is unlikely for the reasons discussed above. As with the bias 

of 1, the genetic data are not consistent with an adult female abundance <200.  

 

B2= About half of the adult female white sharks in the NEP population come to the 

sampling sites.  The population has twice as many adult females than estimated based 

on the photo-ID data (for bias=1 Nf = 96-314 depending on the sex ratio bias as the two 

sites). 

 

Arguments for:  These values allow for a reasonable number of missed animals that are either at 

the sites and not observed in sampling efforts, or never come to the two study areas. These 

higher estimates of adult female abundance are more compatible with the observed level of YOY 

bycatch and the observed level of genetic diversity than the lower estimates (under B1 and B1.2). 

Known levels of YOY mortality would constitute an estimated 25% of the annual pup production 

possible from this many adult females.  Such a mortality rate is more plausible than those 

associated with bias values of 1 and 1.2.  

 

Arguments against:  A 25% YOY mortality rate is still higher than the 20% level and unlikely 

for YOY white sharks in the NEP for reasons discussed above. Genetic data are also not 

consistent with these adult female abundance estimates, because they would still be considered 

low numbers based on the observed level of genetic diversity in the population. 
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B10= At least 10 times the number of adult female white sharks exist in the NEP than 

are sampled at the sampling sites (Nf = 481 to 1570 depending on the sex ratio bias as 

the two sites).   

 

Arguments for:  Known levels of YOY catch would constitute an estimated 7% of the annual pup 

production possible from this number of adult females. This mortality rate is more consistent 

with levels of fisheries mortality for other species. These adult female abundance values are also 

more consistent with the observed genetic diversity levels.    

 

Arguments against:  These adult female abundance levels are not supported by the photo-ID 

data.  Also, given the lack of data there are no measures of the NEP population’s historical 

population size that would allow for the determination of the level of depletion experienced in 

the recent past. Despite the modeling results in Appendix B, it is possible that the population 

experienced a recent depletion, which would explain the high observed level of genetic diversity 

despite a small estimated population size.   

 

SEDM Results:  

 

After taking into account the modeling results, the BRT’s considered the higher levels of bias 

(B2 and B10) to be even more plausible than previously (compare Table I.1 to Table G.2). The 

BRT assigned the majority of plausibility points (>90%) to bias categories B2 and B10, 

indicating that the team felt that there are likely more than 2 times the number of adult females in 

the NEP population than were indicated by the photo-ID studies at the sites. The shift in 

plausibility points to higher levels of bias were influenced by the model results. The catch rates 

and mortality rates for the lower levels of bias were considered to be implausible and 

inconsistent with evidence that the population of NEP white sharks is increasing.  

 

Table I.2 Summary of SEDM voting results regarding the levels of bias in adult female abundance estimates 

associated with sampling only at the two sites in central California and one location at Guadalupe Island.  

 BRT 

Member 
Adult female abundance bias 

categories considered 

B1 B1.2 B2 B10 

1 0 0 40 60 

2 10 25 45 20 

3 0 10 40 50 

4 0 0 10 90 

5 0 0 20 80 

6 0 20 30 50 

7 0 10 70 20 

8 0 0 70 30 

     

Avg 1.3 8.1 40.6 50.0 

Stdev 3.5 10.0 21.5 26.2 
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Appendix J: Alternative analyses for estimating the distribution of maximum 

population growth rate 

 
The integrated matrix-allometric approach reduces the sensitivity of estimates to how uncertainty 

in the species’ life history is specified as illustrated in the following analysis. Table J.1 shows an 

alternative set of prior vital rate distributions to those in Table 4.13 that provided a similar result.  

Contrasting features in this example are that there are only three age classes (no subadult class), 

age to maturity is fixed at 15 years, the survival rate distributions are slightly different, and a 

longevity constraint is applied so that no individuals survive to their 31st birthday.  Eigenanalysis 

of Leslie matrices for the randomly drawn vital rates is used to calculate the λmax distribution.  

Figure J.1A shows the difference in distributions for λmax using conventional approaches and 

vital rates from Table J.1 vs. Table 4.13.  The associated shrinkage estimates from the two sets of 

vital rate inputs are both more precise and more similarly distributed (Figure J.1).   

 

Table J.1  Alternative set of white shark vital rate estimates or 

distributions for calculating a distribution of λmax 

Vital rate Estimate or distribution 

Age at first reproduction, α 15 fixed 

Litter size Uniform (8, 10) 

Sex ratio at birth 1:1 fixed 

Inter-birth interval 2.2 years fixed 

Adult survival, Sadult Uniform(0.90, 0.97) 

Juvenile survival, Sjuv Uniform(0.88, Sa) 

YOY survival, Syoy Uniform(0.45, 0.75) 

Maximum age 30 fixed 

 

 

    

Figure J.1  Distributions for λmax calculated from vital rate distributions in Table 4.13 (white bars) and Table 

J.1 (gray bars).  In A, the estimates are derived from a conventional life table or Leslie matrix approach, 

respectively.  In B, the shrinkage estimates reflect the influence of the allometric model.

A B 
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Appendix K. Summary of BRT point allocation on overall extinction risk  
 

Table K.1  Summary of all BRT plausibility points from SEDM assessing extinction risk, taking all factors 

into account.  

 Extinction risk categories 

 BRT Member High Medium Low 

Very 

Low 

1 0 3 43 54 

2 15 25 30 30 

3 11 17 22 50 

4 5 11 37 47 

5 1 1 22 76 

6 1 2 25 72 

7 0 5 50 45 

8 5 10 55 30 

     

Avg 4.75 9.25 35.5 50.5 

Stdev 5.6 8.4 12.8 16.9 
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